






# Content

| Who is TE?/Product Portfolio                      |
|---------------------------------------------------|
| Our Mission/Our Culture of Innovation             |
| High Voltage Cable Accessories                    |
| Our core competencies                             |
| Training and Service on high voltage accessories. |

# I. High Voltage Cable Terminations



| Heat-Shrinkable Terminations (IHVT-H/ OHVT-H/ LHVT-H)            | 12  |
|------------------------------------------------------------------|-----|
| Self-Supporting Heat-Shrinkable Terminations (OHVT-HS)           | 16  |
| Heat-Shrinkable Terminations for DC Filter Cables (FCEV)         | 19  |
| Outdoor Terminations Composite (OHVT-C)                          | 2   |
| Outdoor Terminations Porcelain (OHVT-P)                          | 26  |
| Outdoor Terminations Dry-type (OHVT-D)                           | 32  |
| Outdoor Terminations Gel type (OHVT-G)                           | 34  |
| Flexible Outdoor Terminations Dry-type (OHVT-F)                  | 3.8 |
| Self-Supporting Flexible Outdoor Terminations Dry-type (OHVT-FS) | 40  |
| Add-On Kits for Outdoor Terminations                             | 42  |
|                                                                  |     |

## High Voltage Cable

# **II. High Voltage Dry Plug-In Terminations**



## igh Voltage ry Plug-In erminations

# III. High Voltage Cable joints



| eat-Shrinkable Joints (EHVS-H)           | 60 |
|------------------------------------------|----|
| ne Piece Joints (EHVS-S)                 | 62 |
| nree Piece Joints (EHVS-T)               | 65 |
| bre-Optic Add-On Kit for HV Cable Joints | 68 |
|                                          |    |

## High Volta

# **IV. High Voltage Connectors**



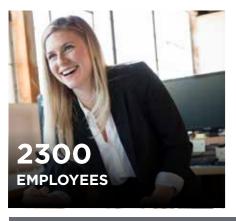
High Voltage Connectors for Outdoor Terminations.....

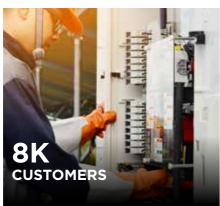
## High Volta Connector

# V. Link Boxes



| HV Link Boxes - HVLB series     |  |
|---------------------------------|--|
| HV Link Boxes - EPPA-055 series |  |


Link Boxe




# Who is TE?

We are a reliable provider of energy solutions for any environment. With a focus on employee expertise and durable products, we deliver the solutions and support that our customers can count on under any circumstance.

We support the generation, transmission and distribution of electricity in a wide array of industries, applications and environments around the world. Through our well-known product families Raychem, SIMEL, AMP and Bowthorpe EMP, we work collaboratively with you, our customers, to tackle your toughest challenges by providing engineering support, qualified products and extraordinary customer experiences.







**Patents** 

\$703M Sales Worldwide

49 Countries 40K **Products** 

**INSULATION & PROTECTION** 

applications from 280 V up to

1200 kV that ensure a safe and

Cable Accessories, Bowthorpe EMP Surge Arresters, and Axicom

material expertise have earned

worldwide recognition for longterm performance in harsh

We provide vital insulation and

protection services for power utility. power OEM, railway, and wind

reliable power supply. TE's Raychem

High Voltage Insulators - and TE's

# **Product Portfolio**

# CABLE ACCESSORIES

Our comprehensive range of cable accessories maintains service reliability in environmental extremes and can be used in both overhead and underground installations. TE and TE's Raychem power cable accessories have been trusted for over 60 years in industries and utilities such as underground, substations, offshore, nuclear and renewable.









**CONNECTORS & FITTINGS** Our well-known product

families include AMP, Simel, and Utilux supply connectors and fittings for low, medium, and high voltage overhead and underground networks. These products have been trusted for decades in complex markets such as substations, overhead lines, underground networks, grounding, original equipment manufacturers. and industrial applications.













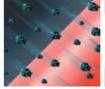
environments.



# **Our Mission**

Provide an integrated offering to deliver the best end-to-end cost advantage with the highest material science competence and drive flawless execution across all functions to gain strong

# A Legacy of Trusted Product Lines



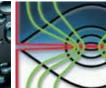

# **Our Culture of Innovation**

We know your industry never stands still; and neither does TE. Our world-class materials science expertise helps us focus on what you need right now - and continue to create the next generation of technology to better serve you.

# **Material Innovations**

Better, longer lasting products start with better materials. Our core materials science focus keeps us ahead of the changing needs of the electrical power industry.




Non-tracking and UV



UHV composite



Moisture blocking



Reduced contact











heat-shrinkable



stress control

# **High Voltage Cable Accessories**



Energy business unit headquarters situated in Ottobrunn (close to Munich), Germany

The brands that make up TE's portfolio of high voltage components represent more than 5 decades of product line experience in the power transmission business. This long-term track record, with projects all over the world, is united under a single company to provide you with a single source of supply. Our global network of technical and sales representatives provides expert application and engineering assistance, hands-on field training and continuous after-sales support to help our customers successfully master the challenges of today's businesses.

Expertise in materials science, product design and process engineering go into the invention, development, manufacture and marketing of our high-performance products. Our competitive advantages are well recognized in the market:

- Customer focused organization
- Innovation and technology driven
- Extensive product offering
- Multiple market segments presence
- Industry leadership and expertise
- Structural and financial strength

Our wide range of reliable and cost-effective solutions is continuously expanded through research-driven product development.

The most innovative utilities and industries around the world use our high voltage cable accessories. Designed to withstand environmental extremes and high pollution levels over long operating lifetimes, they help maintain service reliability in both overhead and underground installations.

All TE's Raychem high voltage cable accessories products are subjected to extensive testing from the time they enter our plants as raw material until they leave as finished products. Regualification testing is carried out on a regular basis with installed components. Customers can therefore have full confidence in the products, services and data supplied. In many cases, this saves the cost and inconvenience of any further downstream verification. All our electrical power products meet international specifications, such as IEC, CENELEC, IEEE, ANSI, and virtually all national standards.

With manufacturing facilities across five continents, we can react promptly to customer requirements and keep lead times and shipping distances to a minimum. An effective product supply chain ensures products move from origin to installation efficiently. Local customer service centers offer a single point of contact with staff that can provide country-specific support based on the needs of each region. By combining local knowledge with world-class research, product development and manufacturing capabilities, we set high standards of performance and user convenience. ISO 9000 series and ISO 14001 certifications for almost all locations underline our continuing commitment to quality and the environment.

# **Our core competencies**



# Understanding the value of high voltage cable accessories as essential elements in a cable system

Since the foundation of TE's Raychem in 1957, we have specialized in the development, design, manufacture and installation of cable accessory products. Our experience and involvement in all of these key areas has positioned us as experts within electrical power engineering. Our expertise in this field means that we can offer safe and reliable products that will form part of your complete cable



## Manufacturing and quality assurance of high voltage insulation systems

With latest manufacturing technology and quality management processes, we maximise efficiencies and thereby offer competitive high voltage cable accessories. We have material expertise as well as test facilities for all related fluid, gaseous and solid insulation material developments, which are used in our complete range of high voltage cable accessories, resulting in maximum product lifetime for our customers. In addition, we are producing and using our own raw material, which allows us to optimize the material properties perfectly based on the needs of our customer.



# Electrical, mechanical and thermal design of high voltage cable accessories and respective connectors

The design of our high voltage accessories is based on knowledge within electrical, mechanical and thermal performance. It is essential to understand the interaction between these physical parameters, since all of them have major impact on the reliability of high voltage cable accessories. We have extensive experience and use modern software that allows us to simulate the physical environments that our accessories would to face. Furthermore, we are the only cable accessories manufacturer worldwide that has all existing stress control systems (geometrical, resistive, refractive and non-linear) in either heat shrink or cold applied technology in our portfolio.



# Realize the importance of all other components being used in high voltage cable accessories on the performance

For the successful operation of high voltage cable accessories it is essential to understand the influence of other related components that are used in high voltage cable accessories, such as hollow core insulators and mechanical connectors. Based on this fact we design, produce and test all these components in-house and minimize negative influence on the performance of the final product. With this strategy we can ensure that the product will deliver what we







# Training and service on high voltage accessories

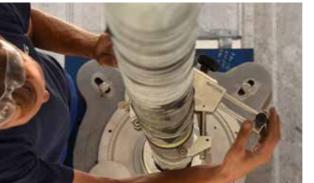


# Training

TE as supplier of high voltage accessories has 5 Training centers around the world. In each training center, we conduct customized training courses. Experienced supervisors show the general handling of high voltage cable and assembly of high voltage accessories as well as the detailed installation of TE high voltage products. Depending on the level of prior knowledge of the participant, the content and scope training are adapted to enable effective and sustainable training. Every training course includes:

- · Theoretical product training.
- Individual HV cable preparation session.




# **Training facilities**

The modern-day training center has been built to function as an educational hub. The classroom is designed and equipped for theoretical lessons and product training. During the session, the coaches can use the latest techology to convey the presentation in a clear and understandable way. The practical training room has been designed and equipped with the necessary tools to train the installers effectively. On-site trainings are also offered to customers by TE based on requirement.



## Instruction

The Training Center worldwide offers qualitative training courses and seminars with the customer in mind. Our expert instructors provide sustained and intensive instruction for the application and use of our products tailored to the requirements of each customer. Our offerings are open to users, sales, network operators, and energy suppliers from all parts of the world. The training centers maintain a close connection with engineering and product specialists within TE to ensure a high level of product knowledge and current techniques. Courses can accommodate beginners and trainees are closely supervised during assembly and installation. Commitment to error-free installation and excellent network reliability is at the core of TE's training services.

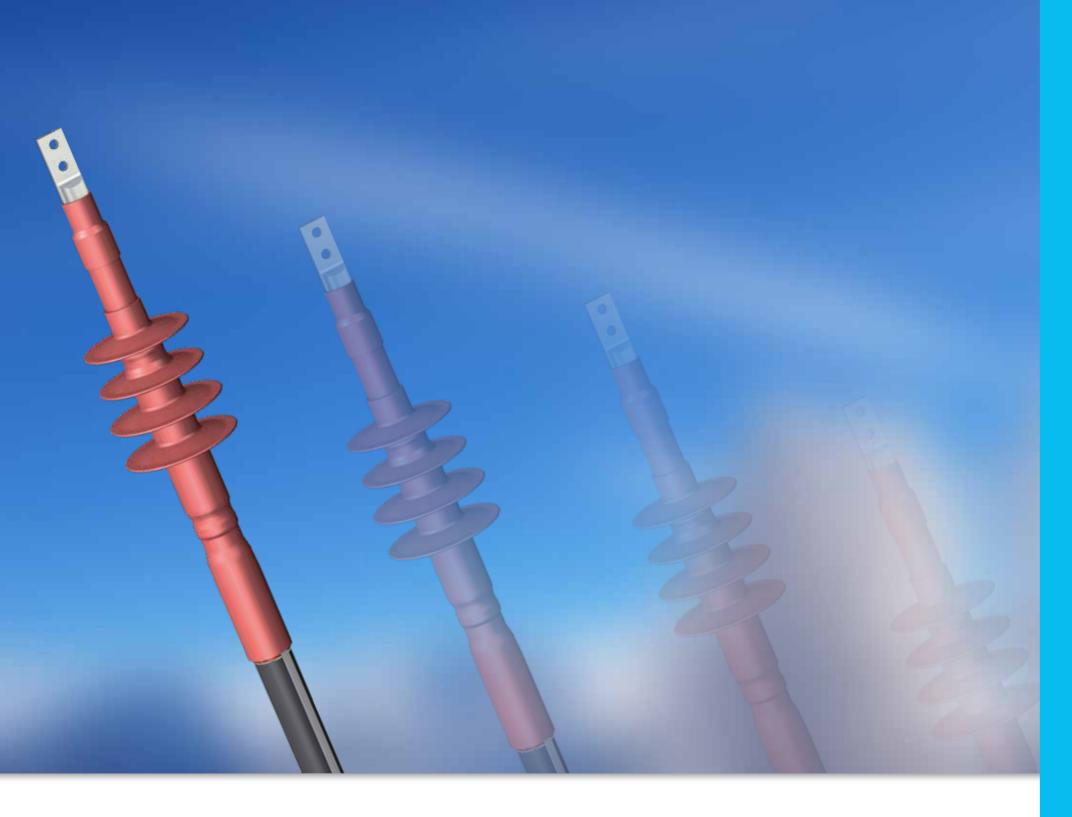


# Field training

In addition to trainings, TE also offers a possibility to supervise on-site installations for jointer's who have not had enough field experience in installing TE accessories. The service can also be used for critical installations. We recommend this service even for jointers who install TE accessories on site the first time. This service ensures the accessories are installed according to the installation instruction.



## Installation


TE has well-trained and experienced jointers who can carry out installation at construction sites. Usually they are supported by local assistance provided by the contractor or the local utility. If there are no trained jointers available locally, ordering installation services from us is the first choice.



## **Equipment, auxiliaries and tools**

TE ensures that the proper equipment and tools are provided during the training courses. All necessary auxiliaries to install the accessories are included in individual separate kits. Upon request, TE can also provide a full range of support for equipment and tools. A complete tool box with all the necessary installation tools, single tools, specialized equipment for a variety of installation conditions will be available. Having the product-specific tools at the disposal of each trainee is essential in acquiring the full scope of the skills needed for installation.







| eat-Shrinkable Terminations (IHVT-H/ OHVT-H/ LHVT-H)    | 12 |
|---------------------------------------------------------|----|
| elf-Supporting Heat-Shrinkable Terminations (OHVT-HS)   | 16 |
| eat-Shrinkable Terminations for DC Filter Cables (FCEV) | 19 |
| utdoor Terminations Composite (OHVT-C)                  | 21 |
| utdoor Terminations Porcelain (OHVT-P)                  | 26 |
| utdoor Terminations Dry-type (OHVT-D)                   | 32 |
| utdoor Terminations Gel type (OHVT-G)                   | 34 |
| exible Outdoor Terminations Dry-type (OHVT-F)           | 38 |
| elf-Supporting Flexible Outdoor                         |    |
| erminations Dry-type (OHVT-FS)                          | 40 |
| dd-On Kits for Outdoor Terminations                     | 42 |
|                                                         |    |

Heat-Shrinkable Terminations

## IHVT-H/OHVT-H

Torque controlled lug

Insulating and non-tracking

Heat-shrinkable stress-control tube

Heat-shrinkable sheds

Stress-relief material

Solderless

grounding accessory

# **Heat-Shrinkable Terminations** (IHVT-H/ OHVT-H/ LHVT-H)

# **APPLICATION**

**FEATURES** 

- The TE's Raychem heat-shrinkable terminations are suitable for all climates, areas, and environments, even severely polluted areas, as well as for all installation conditions, including top feed installation
- Our heat shrink accessories have been used by utilities and industrial companies around the world for more than 50 years
- Compact and modular design
  - Heat-shrinkable stress control sleeves
  - Non-tracking, heat-shrinkable outer insulation
  - Water and corrosion-resistant
  - Different creepage distances available
  - Easy to install
  - Suitable for compression and mechanical luas
  - No special or expensive tools
  - Lightweight components
  - Unlimited shelf life under normal storage conditions
  - No oil or compound filling
  - Reduced waste for disposal
  - Standard storage conditions

| Max. operating voltage U <sub>m</sub> (kV)           | 52                     | 72.5                   | 123                    |
|------------------------------------------------------|------------------------|------------------------|------------------------|
| Standards                                            | IEC 60840<br>IEC 60815 | IEC 60840<br>IEC 60815 | IEC 60840<br>IEC 60815 |
| Rated voltage U (kV)                                 | 45 - 47                | 60 - 69                | 110 - 115              |
| Rated lightning impulse withstand voltage (BIL) (kV) | 250                    | 325                    | 325*                   |



IHVT-52H/OHVT-52H Chapter 1: High Voltage Terminations Heat-Shrinkable Terminations

# **Heat-Shrinkable Terminations (IHVT-52H/ OHVT-52H)**

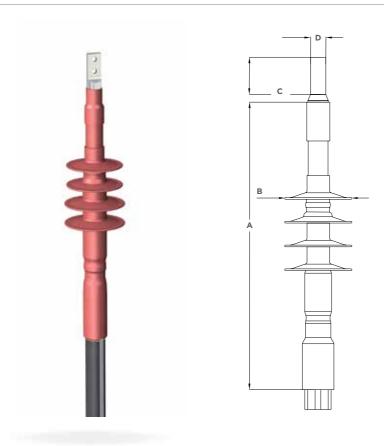




# **Technical data**

| Product description | Conductor cross section (mm²) | Diameter over cable insulation (prepared) (mm) | Max. diameter over outer cable sheath (mm) | Creepage distance approx. (mm) |
|---------------------|-------------------------------|------------------------------------------------|--------------------------------------------|--------------------------------|
| IHVT-52H            | 95 - 2500                     | 30 - 77                                        | 100                                        | 1100                           |
| OHVT-52H            | 95 - 2500                     | 30 - 77                                        | 100                                        | 1540                           |

# **Dimensions**


| Product description | A<br>(mm) | B<br>(mm) | C<br>(mm) | D*<br>(mm) |
|---------------------|-----------|-----------|-----------|------------|
| IHVT-52H            | 800       | 220       | 125       | 30/40/50   |
| OHVT-52H            | 920       | 220       | 125       | 30/40/50   |

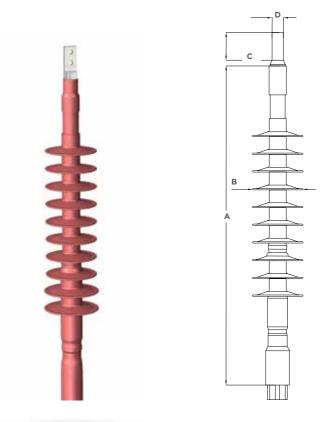




ENERGY /// HIGH VOLTAGE CABLE ACCESSORIES UP TO 245 KV

# **Heat-Shrinkable Terminations (IHVT-72H/ OHVT-72H/ LHVT-72H)**




# **Technical data**

| Product description | Conductor cross section (mm²) | Diameter over cable insulation (prepared) (mm) | Max. diameter over outer cable sheath (mm) | Creepage distance approx. (mm) |
|---------------------|-------------------------------|------------------------------------------------|--------------------------------------------|--------------------------------|
| IHVT-72H            | 95 - 2500                     | 30 - 86                                        | 110                                        | 1600                           |
| OHVT-72H            | 95 - 2500                     | 30 - 86                                        | 110                                        | 2300                           |
| LHVT-72H            | 300 - 2500                    | 38 - 86                                        | 110                                        | 3100                           |

# **Dimensions**

| Product description | A<br>(mm) | B<br>(mm) | C<br>(mm) | D*<br>(mm) |
|---------------------|-----------|-----------|-----------|------------|
| IHVT-72H            | 960       | 220       | 125       | 30/40/50   |
| OHVT-72H            | 1200      | 220       | 125       | 30/40/50   |
| LHVT-72H            | 1560      | 220       | 125       | 30/40/50   |

# **Heat-Shrinkable Terminations (OHVT-123H)**



# Technical data

| Product description | Conductor cross section (mm²) | Diameter over cable insulation (prepared) (mm) | Max. diameter over outer cable sheath (mm) | Creepage distance approx. (mm) |
|---------------------|-------------------------------|------------------------------------------------|--------------------------------------------|--------------------------------|
| OHVT-123H           | 95 - 1600                     | 30 - 86                                        | 110                                        | 3100                           |

| Product description | A    | B    | C    | D*       |
|---------------------|------|------|------|----------|
|                     | (mm) | (mm) | (mm) | (mm)     |
| OHVT-123H           | 1560 | 220  | 125  | 30/40/50 |





Self-supporting Heat-Shrinkable Terminations

Chapter 1: High Voltage Terminations



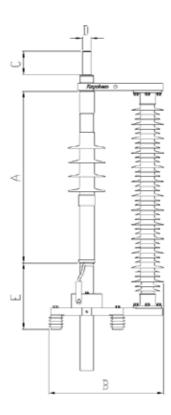




# **Self-supporting Heat-Shrinkable Terminations (OHVT-HS)**

# **APPLICATION**

- The TE's Raychem heat-shrinkable terminations are suitable for all climates, areas, and environments, even severely polluted areas, as well as for all installation conditions, including top feed installation
- Our heat shrink accessories have been used by utilities and industrial companies around the world for more than 50 years


## **FEATURES**

- Compact and modular design
- Heat-shrinkable stress control sleeves
- Non-tracking, heat-shrinkable outer insulation
- Water and corrosion-resistant
- Different creepage distances available
- Easy to install
- Suitable for compression and mechanical lugs
- No special or expensive tools
- Lightweight components
- Unlimited shelf life under normal storage conditions
- No oil or compound filling
- Reduced waste for disposal
- Standard storage conditions

| Max. operating voltage U <sub>m</sub> (kV)           | 52                     | 72,5                   |
|------------------------------------------------------|------------------------|------------------------|
| Standards                                            | IEC 60840<br>IEC 60815 | IEC 60840<br>IEC 60815 |
| Rated voltage U (kV)                                 | 45 - 47                | 60 - 69                |
| Rated lightning impulse withstand voltage (BIL) (kV) | 250                    | 325                    |







# **Technical data**

| Product description | Conductor cross section (mm²) | Diameter over cable insulation (prepared) (mm) | Max. diameter over outer cable sheath (mm) | Creepage distance approx. (mm) |
|---------------------|-------------------------------|------------------------------------------------|--------------------------------------------|--------------------------------|
| OHVT-52HS-2A        | 95 - 2500                     | 30 - 77                                        | 100                                        | 1100                           |
| OHVT-52HS-3A        | 95 - 2500                     | 30 - 77                                        | 100                                        | 1540                           |

| Product description | A<br>(mm) | B<br>(mm) | C<br>(mm) | D*<br>(mm) |
|---------------------|-----------|-----------|-----------|------------|
| IHVT-52H            | 800       | 220       | 125       | 30/40/50   |
| OHVT-52H            | 920       | 220       | 125       | 30/40/50   |









Self-supporting Heat-Shrinkable Terminations

# **Self-Supporting Heat-Shrinkable Terminations (OHVT-72HS)**





# **Technical data**

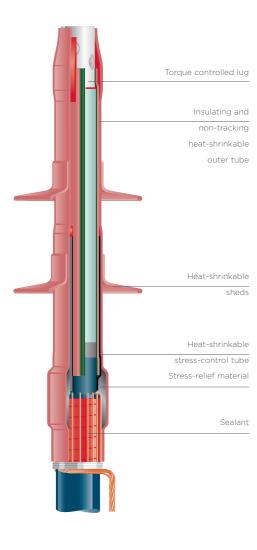
| Product description | Conductor cross section (mm²) | Diameter over cable insulation (prepared) (mm) | Max. diameter over outer cable sheath (mm) | Creepage distance approx. (mm) |  |
|---------------------|-------------------------------|------------------------------------------------|--------------------------------------------|--------------------------------|--|
| IHVT-72HS -2A       | 95 - 2500                     | 30 - 86                                        | 110                                        | 1600                           |  |
| OHVT-72HS -4A       | 95 - 2500                     | 30 - 86                                        | 110                                        | 2300                           |  |

# Dimensions

|  | Product description | A<br>(mm) | B<br>(mm) | C<br>(mm) | D*<br>(mm) |
|--|---------------------|-----------|-----------|-----------|------------|
|  |                     | (111111)  | (11111)   | (111111)  | (11111)    |
|  | IHVT-72HS -2A       | 960       | 220       | 125       | 30/40/50   |
|  | OHVT-72HS -4A       | 1200      | 220       | 125       | 30/40/50   |

# **Heat-Shrinkable Terminations for DC Filter Cables (FCEV)**



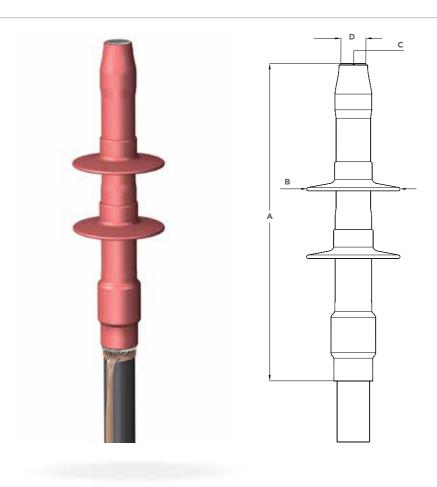

## **APPLICATION**

• Filter terminations are used in applications where both impedance and Heat-shrinkable stress control sleeves non-linear stress control is necessary. The application of the above termination would be in HVDC cables which has an operating voltage up to 200 kV and in the cables used for Very Low Frequency  $\quad \blacksquare \quad$  No special or expensive tools (VLF) testing. The exterior design such  $$\ _{\bullet}$$  Lightweight components as shielding, creepage and protection are developed based on the cable construction and ambient conditions where this termination will be used. The filter cable termination consists of a • Reduced waste for disposal staggered layer of stress control tubings and patches. A heat-shrinkable nontracking insulation tubing and shed are shrunk over the stress control system and ensure a reliable seal to the lug and the oversheath.

# **FEATURES**

- Compact and modular design
- Non-tracking, heat-shrinkable outer insulation
- Easy to install

- Unlimited shelf life under normal storage conditions
- No oil or compound filling




| Max. operating voltage U <sub>m</sub> (kV)           | 111 | 150 | 200    |
|------------------------------------------------------|-----|-----|--------|
| DC withstand test (kV)                               | 200 | 300 | 365 kV |
| Rated lightning impulse withstand voltage (BIL) (kV) | 240 | 325 | 425 kV |









# **Technical data**

| Product description | No Load voltage U <sub>L</sub> | Conductor cross section (mm²) | Diameter over cable insulation (mm) |
|---------------------|--------------------------------|-------------------------------|-------------------------------------|
| FCEV-111            | 111                            | 35 - 95                       | 26 - 38                             |
| FCEV-150            | 150                            | 35 - 95                       | 26 - 38                             |
| FCEV-150-1          | 150                            | 95 - 240                      | 38 - 52                             |
| FCEV-200            | 200                            | 35 - 95                       | 26 - 38                             |

# **Dimensions**

| Product description | A<br>(mm) | B<br>(mm) | C<br>(mm) | D<br>(mm) |
|---------------------|-----------|-----------|-----------|-----------|
|                     | (11111)   | (11111)   | (11111)   | (11111)   |
| FCEV-111            | 500       | 155       | M10       | 32        |
| FCEV-150            | 700       | 155       | M10       | 32        |
| FCEV-150-1          | 700       | 155       | M10       | 32        |
| FCEV-200            | 900       | 155       | M10       | 32        |



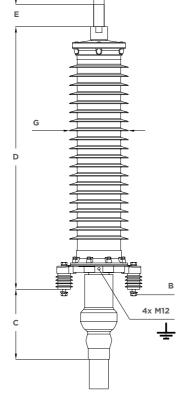


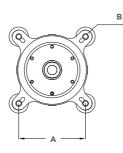
# **Outdoor Terminations Composite** (OHVT-C)

# **APPLICATION**

 The termination is designed for voltage classes up to 245 kV and to operate under severe environmental conditions. Polymeric insulated cables of various designs can be adopted with respect to shielding and metal sheath. Composite housings with different creepage lengths up to 50 mm/kV are available for the most common and also extreme pollution levels according to IEC 60071-1 and IEC 60071-2

# **FEATURES**


- Pressure-tight and light weight composite housing
- Pre-fabricated and factory-tested Silicone-rubber stress cone
- Torque-controlled conductor bolt
- No special tools required to install the termination
- Silicone-oil filling without preheating
- Insulated base plate for sectionalization
- Fittings made of corrosion-resistant alloy
- Type tested according to IEC 60840 and IEC 62067 standards


| Max. operating voltage U <sub>m</sub> (kV)           | 72.5                   | 123                    | 145                    | 170                    | 245                    |
|------------------------------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| Standards                                            | IEC 60840<br>IEC 60815 | IEC 60840<br>IEC 60815 | IEC 60840<br>IEC 60815 | IEC 60840<br>IEC 60815 | IEC 62067<br>IEC 60815 |
| Rated voltage U (kV)                                 | 60 - 69                | 110 - 115              | 132 - 138              | 150 - 161              | 220 - 230              |
| Rated lightning impulse withstand voltage (BIL) (kV) | 325                    | 550                    | 650                    | 750                    | 1050                   |





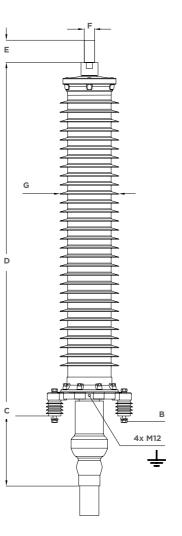


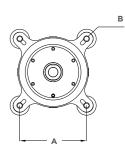




# **Technical data**

| Product description | Conductor cross section (mm²) | Diameter over cable insulation (prepared) (mm²) | Max. diameter over outer cable sheath (mm) | Minimal creepage distance (mm) |  |
|---------------------|-------------------------------|-------------------------------------------------|--------------------------------------------|--------------------------------|--|
| OHVT-72C (-2A)      | 95 - 2500                     | 34 - 97                                         | 110                                        | 2164                           |  |
| OHVT-72C (-2B)      | 95 - 2500                     | 34 - 97                                         | 110                                        | 2383                           |  |
| OHVT-72C (-2C)      | 95 - 2500                     | 34 - 97                                         | 110                                        | 3089                           |  |


# **Dimensions**


ENERGY /// HIGH VOLTAGE CABLE ACCESSORIES UP TO 245 KV

| Product description | A<br>(mm) | B<br>(mm) | C<br>(mm) | D<br>(mm) | E<br>(mm) | F<br>(mm) | G<br>(mm) |
|---------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| OHVT-72C (-2A)      | 300 - 345 | M16       | 350       | 1276      | 100/130   | 30/40/50  | 294       |
| OHVT-72C (-2B)      | 300 - 345 | M16       | 350       | 1072      | 100/130   | 30/40/50  | 304       |
| OHVT-72C (-2C)      | 300 - 345 | M16       | 350       | 1262      | 100/130   | 30/40/50  | 308       |

# **Outdoor Terminations (OHVT-145C)**

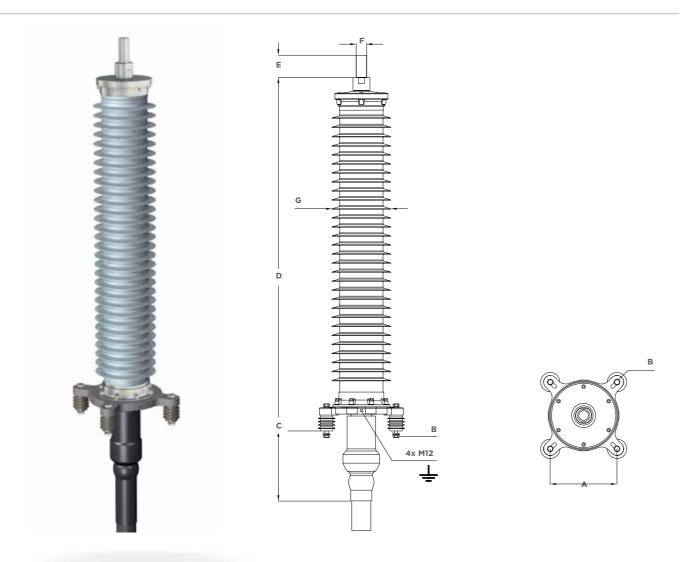






# Technical data

| Product description | Conductor cross section (mm²) | Diameter over cable insulation (prepared) (mm) | Max. diameter over outer cable sheath (mm) | Minimal creepage distance (mm) |
|---------------------|-------------------------------|------------------------------------------------|--------------------------------------------|--------------------------------|
| OHVT-145C (-2A)     | 95 - 2500                     | 34 - 97                                        | 110                                        | 3392                           |
| OHVT-145C (-3A)     | 95 - 2500                     | 34 - 97                                        | 110                                        | 3829                           |
| OHVT-145C (-4A)     | 95 - 2500                     | 34 - 97                                        | 110                                        | 4684                           |
| OHVT-145C (-4B)     | 95 - 2500                     | 34 - 97                                        | 110                                        | 6100                           |
| OHVT-145C (-4C)     | 95 - 2500                     | 34 - 97                                        | 110                                        | 8047                           |


| Product description | Α ()      | B    | C    | D    | E ()    | F ()     | G    |
|---------------------|-----------|------|------|------|---------|----------|------|
|                     | (mm)      | (mm) | (mm) | (mm) | (mm)    | (mm)     | (mm) |
| OHVT-145C (-2A)     | 300 - 345 | M16  | 350  | 1771 | 100/130 | 30/40/50 | 294  |
| OHVT-145C (-3A)     | 300 - 345 | M16  | 350  | 1951 | 100/130 | 30/40/50 | 294  |
| OHVT-145C (-4A)     | 300 - 345 | M16  | 350  | 1696 | 100/130 | 30/40/50 | 304  |
| OHVT-145C (-4B)     | 300 - 345 | M16  | 350  | 2080 | 100/130 | 30/40/50 | 304  |
| OHVT-145C (-4C)     | 300 - 345 | M16  | 350  | 2608 | 100/130 | 30/40/50 | 304  |

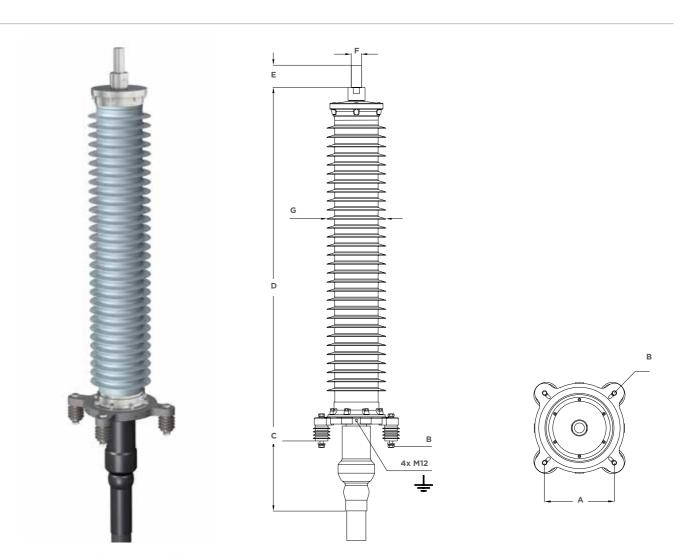






# **Outdoor Terminations (OHVT-170C)**




# **Technical data**

| Product description | Conductor cross section (mm²) | Diameter over cable insulation (prepared) (mm) | Max. diameter over outer cable sheath (mm) | Minimal creepage distance (mm) |
|---------------------|-------------------------------|------------------------------------------------|--------------------------------------------|--------------------------------|
| OHVT-170C (-1A)     | 95 - 2500                     | 43 - 108                                       | 135                                        | 3829                           |
| OHVT-170C (-3A)     | 95 - 2500                     | 43 - 108                                       | 135                                        | 4273                           |
| OHVT-170C (-4A)     | 95 - 2500                     | 43 - 108                                       | 135                                        | 5373                           |
| OHVT-170C (-4B)     | 95 - 2500                     | 43 - 108                                       | 135                                        | 5746                           |
| OHVT-170C (-4C)     | 95 - 2500                     | 43 - 108                                       | 135                                        | 9436                           |

# Dimensions

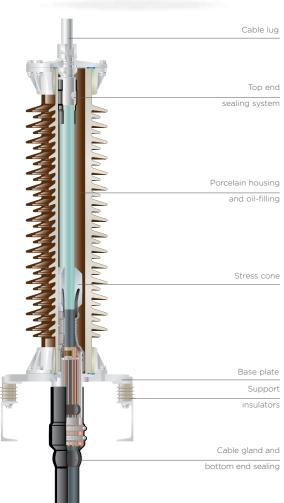
| Product description | Α         | В    | С    | D    | E       | F        | G    |
|---------------------|-----------|------|------|------|---------|----------|------|
| Product description | (mm)      | (mm) | (mm) | (mm) | (mm)    | (mm)     | (mm) |
| OHVT-170C (-1A)     | 300 - 345 | M16  | 350  | 2028 | 100/130 | 30/40/50 | 345  |
| OHVT-170C (-3A)     | 300 - 345 | M16  | 350  | 2224 | 100/130 | 30/40/50 | 345  |
| OHVT-170C (-4A)     | 300 - 345 | M16  | 350  | 2614 | 100/130 | 30/40/50 | 345  |
| OHVT-170C (-4B)     | 300 - 345 | M16  | 350  | 2056 | 100/130 | 30/40/50 | 345  |
| OHVT-170C (-4C)     | 300 - 345 | M16  | 350  | 2856 | 100/130 | 30/40/50 | 345  |

# **Outdoor Terminations (OHVT-245C)**



# Technical data

| Product description | Conductor cross section (mm²) | Diameter over cable insulation (prepared) (mm) | Max. diameter over outer cable sheath (mm) | Minimal creepage distance (mm) |
|---------------------|-------------------------------|------------------------------------------------|--------------------------------------------|--------------------------------|
| OHVT-245C (-2A)     | 300 - 2500                    | 77 - 119                                       | 150                                        | 5161                           |
| OHVT-245C (-3A)     | 300 - 2500                    | 77 - 119                                       | 150                                        | 5605                           |
| OHVT-245C (-4A)     | 300 - 2500                    | 77 - 119                                       | 150                                        | 6160                           |
| OHVT-245C (-4B)     | 300 - 2500                    | 77 - 119                                       | 150                                        | 8401                           |
| OHVT-245C (-4C)     | 300 - 2500                    | 77 - 119                                       | 150                                        | 10171                          |


| Product description | A         | В    | С    | D    | E       | F     | G    |
|---------------------|-----------|------|------|------|---------|-------|------|
| Froduct description | (mm)      | (mm) | (mm) | (mm) | (mm)    | (mm)  | (mm) |
| OHVT-245C (-2A)     | 430 - 550 | M16  | 350  | 2564 | 100/130 | 50/60 | 402  |
| OHVT-245C (-3A)     | 430 - 550 | M16  | 350  | 2744 | 100/130 | 50/60 | 402  |
| OHVT-245C (-4A)     | 430 - 550 | M16  | 350  | 2969 | 100/130 | 50/60 | 402  |
| OHVT-245C (-4B)     | 430 - 550 | M16  | 350  | 2777 | 100/130 | 50/60 | 402  |
| OHVT-245C (-4C)     | 430 - 550 | M16  | 350  | 3257 | 100/130 | 50/60 | 402  |







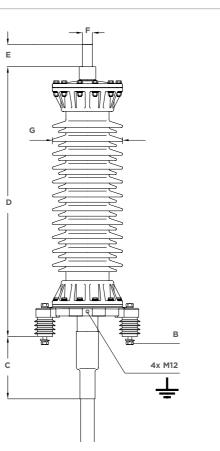


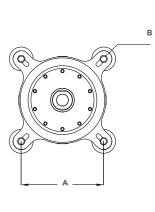


# **Outdoor Terminations Porcelain** (OHVT-P)

# **APPLICATION**

 The termination is designed for voltage classes up to 245 kV and to operate under severe environmental conditions. Polymeric insulated cables of various designs can be adopted with respect to shielding and metal sheath


# **FEATURES**


- Well-proven porcelain housing
- Pre-fabricated and factory-tested Silicone-rubber stress cone
- Torque-controlled conductor bolt
- H/S components used for sealing
- No special tools required to install the
- Silicone-oil filling without preheating
- Insulated base plate for sectionalization
- Fittings made of corrosion resistant alloy
- Type tested according to IEC 60840 and IEC 62067 standards

| Max. operating voltage U <sub>m</sub> (kV)           | 72.5                   | 123                    | 145                    | 245                    |
|------------------------------------------------------|------------------------|------------------------|------------------------|------------------------|
| Standards                                            | IEC 60840<br>IEC 60815 | IEC 60840<br>IEC 60815 | IEC 60840<br>IEC 60815 | IEC 62067<br>IEC 60815 |
| Rated voltage U (kV)                                 | 60 - 69                | 110 - 115              | 132 - 138              | 220 - 230              |
| Rated lightning impulse withstand voltage (BIL) (kV) | 325                    | 550                    | 650                    | 1050                   |

# **Outdoor Terminations (OHVT-72P)**

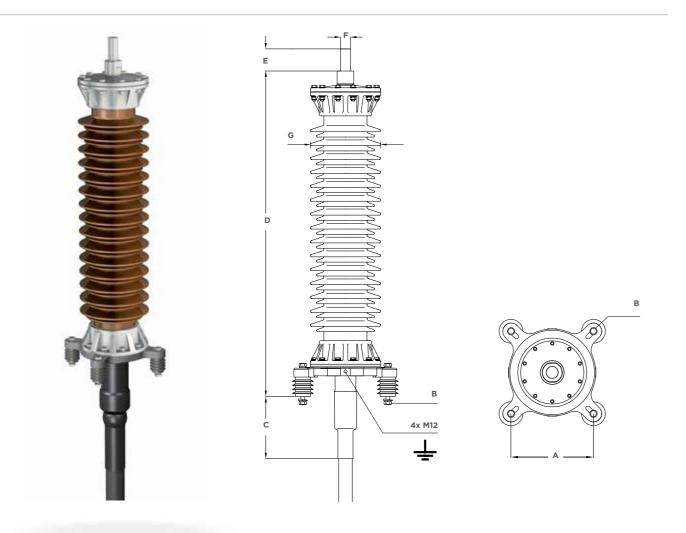






# **Technical data**

| Product description | Conductor cross section |         | Max. diameter over outer cable sheath (mm) | Minimal creepage distance (mm) |
|---------------------|-------------------------|---------|--------------------------------------------|--------------------------------|
| OHVT-72P (-2A)      | 95 - 1200               | 34 - 74 | 110                                        | 2350                           |


| Product description | A<br>(mm) | B<br>(mm) | C<br>(mm) | D<br>(mm) | E<br>(mm) | F<br>(mm) | G<br>(mm) |
|---------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| OHVT-72P (-2A)      | 300 - 345 | M16       | 350       | 1245      | 100/130   | 30/40/50  | 360       |

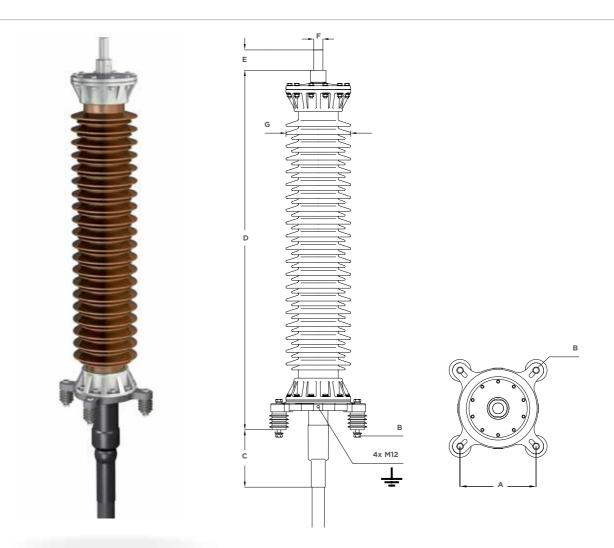






# **Outdoor Terminations (OHVT-123P)**




# Technical data

| Product description | Conductor cross section (mm²) | Diameter over cable insulation (prepared) (mm) | Max. diameter over outer cable sheath (mm) | Minimal creepage distance (mm) |
|---------------------|-------------------------------|------------------------------------------------|--------------------------------------------|--------------------------------|
| OHVT-123P (-4B)     | 95 - 1200                     | 34 - 74                                        | 110                                        | 3910                           |

# Dimensions

| Product description | A<br>(mm) | B<br>(mm) | C<br>(mm) | D<br>(mm) | E<br>(mm) | F<br>(mm) | G<br>(mm) |
|---------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| OHVT-123P (-4B)     | 300 - 345 | M16       | 350       | 1615      | 100/130   | 30/40/50  | 360       |

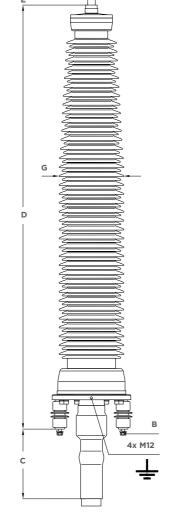
# **Outdoor Terminations (OHVT-145P)**

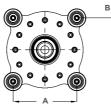


# Technical data

| Product description | Conductor cross section (mm²) | Diameter over cable insulation (prepared) (mm) | Max. diameter over outer cable sheath (mm) | Minimal creepage distance (mm) |
|---------------------|-------------------------------|------------------------------------------------|--------------------------------------------|--------------------------------|
| OHVT-145P (-4A)     | 95 - 1200                     | 34 - 74                                        | 110                                        | 4300                           |

| Droduct description | A         | В    | С    | D    | Е       | F        | G    |
|---------------------|-----------|------|------|------|---------|----------|------|
| Product description | (mm)      | (mm) | (mm) | (mm) | (mm)    | (mm)     | (mm) |
| OHVT-145P (-4A)     | 300 - 345 | M16  | 350  | 1785 | 100/130 | 30/40/50 | 360  |





Outdoor Terminations Porcelain

OHVT-245P

Chapter 1: High Vo







# Technical data

| Product description | Conductor cross section (mm²) | Diameter over cable insulation (prepared) (mm) | Max. diameter over outer cable sheath (mm) | Minimal creepage distance (mm) |
|---------------------|-------------------------------|------------------------------------------------|--------------------------------------------|--------------------------------|
| OHVT-245P (-4A)     | 300 - 2500                    | 71 - 119                                       | 170                                        | 9100                           |

| Product description | A<br>(mm) | B<br>(mm) | C<br>(mm) | D<br>(mm) | E<br>(mm) | F<br>(mm) | G<br>(mm) |
|---------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| OHVT-245P (-4A)     | 500       | M24       | 550       | 3356      | 100/130   | 50/60     | 514       |



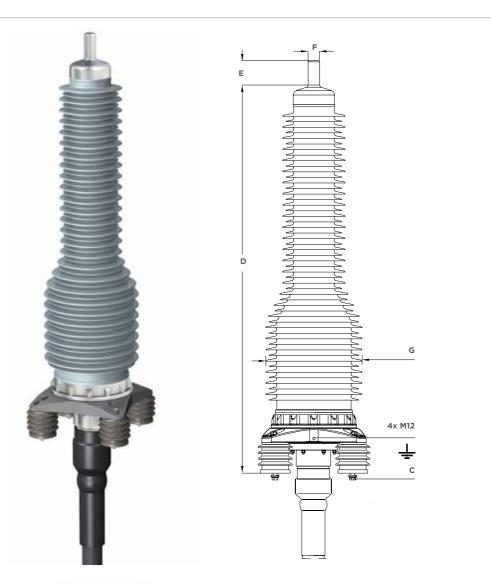


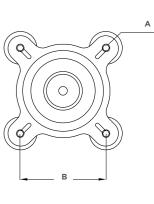
# Upper metal fitting Resin body with silicone shed housing Mechanical connector Stress cone Spring-loaded compression ring Base plate Support insulators Gland and sealing

ENERGY /// HIGH VOLTAGE CABLE ACCESSORIES UP TO 245 KV

# **Outdoor Terminations Dry-type** (OHVT-D)

# **APPLICATION**


 The dry self-supporting termination is designed for voltage class 145 kV and operation under severe environmental conditions. It is free from any insulating liquid or gel. Polymeric insulated cables of various designs can be adopted with respect to shielding and metal sheath. The termination is easily separable and consists of a plug-in part and an epoxy resin insulator protected with a directly moulded silicone shed housing. Due to the short cable cut-back dimensions of the plug-in, the time required to install the termination is very short and can be further reduced by pre-installing the plug-in on the shop floor. The plug-in is similar to the plug-in used with our dry switchgear/transformer termination


## **FEATURES**

- Dry interface, no oil-filling
- Self-supporting
- Pre-fabricated and factory tested silicone-rubber stress cone
- Torque-controlled multi-contact conductor bolt
- Fast and simple installation combining GIS plug-in technology with polymeric insulators
- No special tools required to install the termination
- Insulated cable gland for sectionali-
- Type tested according to IEC 60840

| Max. operating voltage U <sub>m</sub> (kV)           | 123                    | 145                    |
|------------------------------------------------------|------------------------|------------------------|
| Standards                                            | IEC 60840<br>IEC 60815 | IEC 60840<br>IEC 60815 |
| Rated voltage U (kV)                                 | 110 - 115              | 132 - 138              |
| Rated lightning impulse withstand voltage (BIL) (kV) | 550                    | 650                    |

# **Outdoor Terminations Dry-type (OHVT-D)**





# **Technical data**

| Product description | Conductor cross section (mm²) | Diameter over cable insulation (prepared) (mm) | Max. diameter over outer cable sheath (mm) | Minimal creepage distance (mm) |
|---------------------|-------------------------------|------------------------------------------------|--------------------------------------------|--------------------------------|
| OHVT-145D           | 95 - 1200                     | 34 - 78                                        | 120                                        | 4680                           |

| Product description | A<br>(mm) | B<br>(mm) | C<br>(mm) | D<br>(mm) | E<br>(mm) | F<br>(mm) | G<br>(mm) |
|---------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| OHVT-145D           | 450       | 345       | M16       | 1783      | 100       | 50        | 410       |







Outdoor Terminations Composite



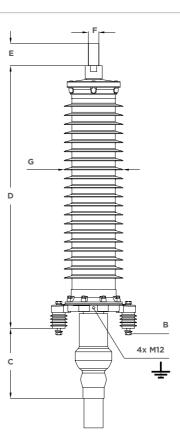


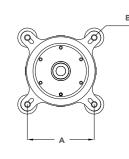
# **Outdoor Terminations Gel Type** (OHVT-G)

# APPLICATION

■ The termination is designed for voltage classes up to 145 kV and to operate under severe environmental conditions. Polymeric insulated cables of various designs can be adopted with respect to shielding and metal sheath. Composite housings with different creepage lengths up to 50 mm/kV are available for the most common and also extreme pollution levels according to IEC 60071-1 and IEC 60071-2

## **FEATURES**


- The insulators are filled with a 2 part gel.
- Pressure-tight and light weight composite housing
- Pre-fabricated and factory-tested Silicone-rubber stress cone
- Torque-controlled conductor bolt
- No special tools required to install the
- Insulating medium Rayfil is a Gel which is ensuring no leakages
- Insulated base plate for sectionalization
- Fittings made of corrosion-resistant alloy
- Type tested according to IEC 60840


| - 11        | Cable lug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| H           | Top end                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 100,275,00  | and in a sustant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 100.00      | sealing system                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | E-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 1984        | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 198         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | E.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| -911        | En .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| -98         | l=                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| - 68        | Insulator housing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | and gel-filling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | and ger-ming                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             | En .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|             | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -91         | in the second se |
| - 100       | Stress cone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| - 111-3     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| THE RESERVE | Ē.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| = 1 /       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 4         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 1         | F                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|             | Base plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 100         | Base plate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 0.00        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 707         | <b>**</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| -           | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| - 1         | Cable gland and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| - 10        | hottom and coaling                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             | bottom end sealing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| Max. operating voltage U <sub>m</sub> (kV)           | 72.5                   | 123                    | 145                    | 170                    | 245                    |
|------------------------------------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| Standards                                            | IEC 60840<br>IEC 60815 | IEC 60840<br>IEC 60815 | IEC 60840<br>IEC 60815 | IEC 60840<br>IEC 60815 | IEC 62067<br>IEC 60815 |
| Rated voltage U (kV)                                 | 60 - 69                | 110 - 115              | 132 - 138              | 150 - 161              | 220 - 230              |
| Rated lightning impulse withstand voltage (BIL) (kV) | 325                    | 550                    | 650                    | 750                    | 1050                   |

# **Outdoor Terminations (OHVT-72G)**

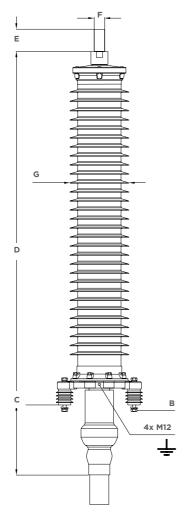


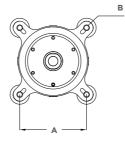




# **Technical data**

| Product description | Conductor cross section (mm²) | Diameter over cable insulation (prepared) (mm²) | Max. diameter over outer cable sheath (mm) | Minimal creepage distance (mm) |  |
|---------------------|-------------------------------|-------------------------------------------------|--------------------------------------------|--------------------------------|--|
| OHVT-72G (-2A)      | 95 - 2500                     | 34 - 97                                         | 110                                        | 2164                           |  |
| OHVT-72G (-2B)      | 95 - 2500                     | 34 - 97                                         | 110                                        | 2383                           |  |
| OHVT-72G (-2C)      | 95 - 2500                     | 34 - 97                                         | 110                                        | 3089                           |  |


| Product d | description | A<br>(mm) | B<br>(mm) | C<br>(mm) | D<br>(mm) | E<br>(mm) | F<br>(mm) | G<br>(mm) |
|-----------|-------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| OHVT-720  | G (-2A)     | 300 - 345 | M16       | 350       | 1276      | 100/130   | 30/40/50  | 294       |
| OHVT-720  | G (-2B)     | 300 - 345 | M16       | 350       | 1072      | 100/130   | 30/40/50  | 304       |
| OHVT-720  | G (-2C)     | 300 - 345 | M16       | 350       | 1262      | 100/130   | 30/40/50  | 308       |






# **Outdoor Terminations (OHVT-145G)**





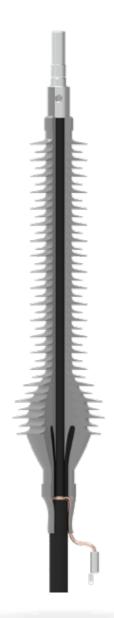


# **Technical data**

| Product description | Conductor cross section (mm²) | Diameter over cable insulation (prepared) (mm) | Max. diameter over outer cable sheath (mm) | Minimal creepage distance (mm) |
|---------------------|-------------------------------|------------------------------------------------|--------------------------------------------|--------------------------------|
| OHVT-145G (-2A)     | 95 - 2500                     | 34 - 97                                        | 110                                        | 3392                           |
| OHVT-145G (-3A)     | 95 - 2500                     | 34 - 97                                        | 110                                        | 3829                           |
| OHVT-145G (-4A)     | 95 - 2500                     | 34 - 97                                        | 110                                        | 4684                           |
| OHVT-145G (-4B)     | 95 - 2500                     | 34 - 97                                        | 110                                        | 6100                           |
| OHVT-145C (-4C)     | 95 - 2500                     | 34 - 97                                        | 110                                        | 8047                           |

| Product description | A<br>(mm) | B<br>(mm) | C<br>(mm) | D<br>(mm) | E<br>(mm) | F<br>(mm) | G<br>(mm) |
|---------------------|-----------|-----------|-----------|-----------|-----------|-----------|-----------|
| OHVT-145G (-2A)     | 300 - 345 | M16       | 350       | 1771      | 100/130   | 30/40/50  | 294       |
| OHVT-145G (-3A)     | 300 - 345 | M16       | 350       | 1951      | 100/130   | 30/40/50  | 294       |
| OHVT-145G (-4A)     | 300 - 345 | M16       | 350       | 1696      | 100/130   | 30/40/50  | 304       |
| OHVT-145G (-4B)     | 300 - 345 | M16       | 350       | 2080      | 100/130   | 30/40/50  | 304       |
| OHVT-145G (-4C)     | 300 - 345 | M16       | 350       | 2608      | 100/130   | 30/40/50  | 304       |






Dry Flexible Terminations

Terminations OHVT-F



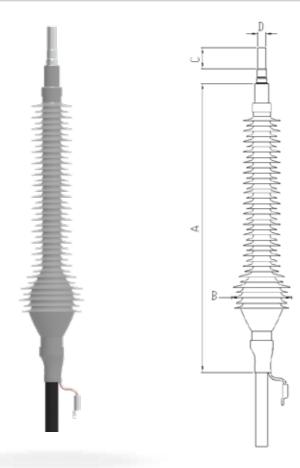




# **Dry Flexible Terminations (OHVT-F)**

# **APPLICATION**

The self supporting dry flexible termination is designed for voltage glass up to 145 kV and operating under severe enviromental condition, it is free from any insulating liquid or gel so it is no risk of leakage. Various polymeric cable with different shielding and metal sheath can be adapted based on customized design.


# **FEATURES**

- Dry interface, no leakage risk
- Pre-fabricated and 100% factory tested
- Light weight
- Solderless grounding system, eliminate the risk of overheated cable
- Flexible on the installation angle.

| Max. operating voltage U <sub>m</sub> (kV)           | 123                    | 145                    |
|------------------------------------------------------|------------------------|------------------------|
| Standards                                            | IEC 60840<br>IEC 60815 | IEC 60840<br>IEC 60815 |
| Rated voltage U (kV)                                 | 110 - 115              | 132 - 138              |
| Rated lightning impulse withstand voltage (BIL) (kV) | 550                    | 650                    |

Chapter 1: High Voltage Terminations Dry Flexible Terminations OHVT-145F

# **Dry-Flexible Terminations (OHVT-145F)**



# Technical data

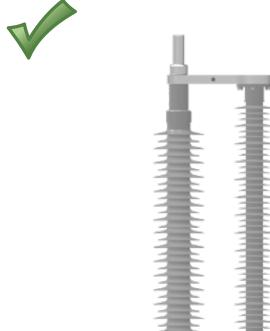
| Product description | Conductor cross section (mm²) | Diameter over cable insulation (prepared) (mm) | Max. diameter over outer cable sheath (mm) | Creepage distance approx. (mm) |
|---------------------|-------------------------------|------------------------------------------------|--------------------------------------------|--------------------------------|
| OHVT-145F           | 240 - 1200                    | 49,5 - 78                                      | 130                                        | 4590                           |


# Dimensions

| Product description | A    | B    | C    | D*       |
|---------------------|------|------|------|----------|
|                     | (mm) | (mm) | (mm) | (mm)     |
| OHVT-145F           | 1560 | 220  | 125  | 30/40/50 |

Different studs and pads are








High Voltag Termination

Dry Flexible Terminations

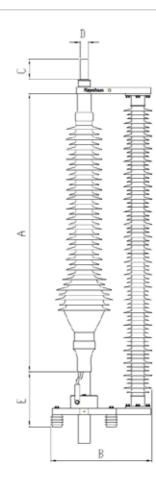
OHVT-FS



# **Self-Supporting Dry Flexible Terminations (OHVT-FS)**

# **APPLICATION**

 The self supporting dry flexible termination is designed for voltage glass up to 145 kV and operating under severe enviromental condition, it is free from any insulating liquid or gel so it is no risk of leakage. Various polymeric cable with different shielding and metal sheath can be adapted based on customized design.


# **FEATURES**

- Dry interface, no leakage risk
- Pre-fabricated and 100% factory tested
- Light weight
- Solderless grounding system, eliminate the risk of overheated cable
- Self-support to enhance mechanical performance

| Max. operating voltage U <sub>m</sub> (kV)           | 123                    | 145                    |
|------------------------------------------------------|------------------------|------------------------|
| Standards                                            | IEC 60840<br>IEC 60815 | IEC 60840<br>IEC 60815 |
| Rated voltage U (kV)                                 | 110 - 115              | 132 - 138              |
| Rated lightning impulse withstand voltage (BIL) (kV) | 550                    | 650                    |

# **Self-Supporting Dry-Flexible Terminations (OHVT-145FS)**





# **Technical data**

| Product description | Conductor cross section (mm²) | Diameter over cable insulation (prepared) (mm) | Max. diameter over outer cable sheath (mm) | Creepage distance approx. (mm) |
|---------------------|-------------------------------|------------------------------------------------|--------------------------------------------|--------------------------------|
| OHVT-145TS          | 240 - 1200                    | 49,5 - 78                                      | 130                                        | 4590                           |

| Product description | A    | B    | C    | D*       | E    |
|---------------------|------|------|------|----------|------|
|                     | (mm) | (mm) | (mm) | (mm)     | (mm) |
| OHVT-145FS          | 1560 | 220  | 125  | 30/40/50 | 350  |









# Arcing Horn for Outdoor Terminations (OHVT)

# **APPLICATION**

The arcing horns are made to protect the insulators from damage during a flashover. In case of overvoltages, the horns provide a separate breakdown path through the air and keep the flash over away from the insulator surface. As a result of this, the probability of insulator damage by overvoltage is reduced dramatically. The gap length can be adjusted so that the overvoltage withstand-level is variable

## **FEATURES**

- Easy installation
- Various flashover lengths available
- No contact to the grounding system of the termination and power cable for isolated operation
- May be used for porcelain and composite insulators
- Special designs on request



# Lifting Device for Outdoor Terminations (OHVT)

# **APPLICATION**

 This lifting device is designed for lifting the installed termination, including the cable, to high positioned installation sites

# FEATURES

- Comfortable and safe installation of the termination on the ground
- Designed to lift the complete installed and oil filled termination with cable
- Easy placement and mounting onto the rack on the pylon
- Applicable for all TE Connectivity terminations up to 170 kV
- Adjustable to all common cable sizes up to a diameter over cable sheath of 110 mm
- Easy assembling and handling
- Entire pulling force is applied to the cable only; no mechanical stress is applied to the termination
- Lifting slings and shackles are not included in the kit, because of their yearly safety check regulations
- Maximum lifting weight 500 kg



# Grounding kits for Outdoor terminations for Dry Plug-in Switchgear and Transformer Terminations

## **APPLICATION**

 Suitable for the proper connection of the ground to the high voltage cable
 accessories

# **FEATURES**

- Either for direct grounding or via sheath voltage arrester (SVL)
- Usable for outdoor terminations
- Usable for Plug for Dry Plugin Switchgear and Transformer Terminations,
- Different SVL levels available
- Different cross-sections available

|               |                     | Indoor Application |                       | Outdoor Application |                       |
|---------------|---------------------|--------------------|-----------------------|---------------------|-----------------------|
| Voltage Class | Device Height       | Part Number        | Description           | Part Number         | Description           |
| Without SVL   | 95 mm²              | EN8080-000         | HVCA-GND-LEAD-95      | EN8080-000          | HVCA-GND-LEAD-95      |
| Without SVL   | 240 mm <sup>2</sup> | EN8081-000         | HVCA-GND-LEAD-240     | EN8081-000          | HVCA-GND-LEAD-240     |
| 1 kV          | 95 mm²              | EN8082-000         | HVCA-GND-LEAD-I-1-95  | EN8081-000          | HVCA-GND-LEAD-0-1-95  |
| I KV          | 240 mm <sup>2</sup> | EN8083-000         | HVCA-GND-LEAD-I-1-240 | EN8082-000          | HVCA-GND-LEAD-0-1-240 |
| 3 kV          | 95 mm²              | EN8084-000         | HVCA-GND-LEAD-I-3-95  | EN8083-000          | HVCA-GND-LEAD-0-3-95  |
| 3 KV          | 240 mm <sup>2</sup> | EN8085-000         | HVCA-GND-LEAD-I-3-240 | EN8084-000          | HVCA-GND-LEAD-0-3-240 |
| 6 kV          | 95 mm²              | EN8086-000         | HVCA-GND-LEAD-I-6-95  | EN8085-000          | HVCA-GND-LEAD-0-6-95  |
| o kv          | 240 mm²             | EN8087-000         | HVCA-GND-LEAD-I-6-240 | EN8086-000          | HVCA-GND-LEAD-0-6-240 |



# Fibre-Optic Add-On Kit for Outdoor Terminations

# **APPLICATION**

- The TE's Raychem fibre-optic add-on kit is designed to connect the glass fibres integrated in HV cables. The kit includes all components required to seal the cable jacket and the fibre-optic outlet securely and to protect the sensitive optical fibres that are housed inside the steel pipes
- The standard add-on kit is suitable for connecting two individual steel pipes each with a maximum of 24 optical fibres

# FEATURES

- Gel-sealing technology ensures reliable outdoor operation
- Enhanced fibre management
- The splice box is easy to open and close without the use of special tools
- The kits are available for TE's Raychem outdoor terminations

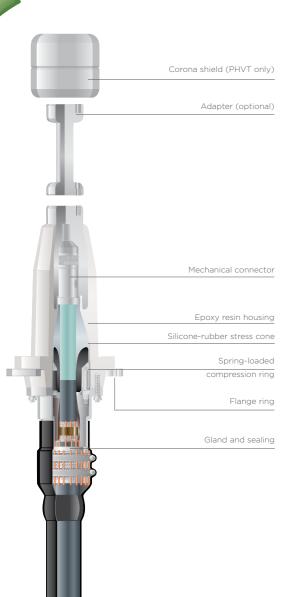








# Chapter II High Voltage Dry Plug-In Terminations


| Dry Plug-In Switchgear                     |    |
|--------------------------------------------|----|
| and Transformer Terminations (PHVS & PHVT) | 46 |
| Add-On Kits for Dry Plug-In Switchgear     |    |
| and Transformer Terminations               | 55 |



Chapter 2: High Voltage Dry Plug-In

Dry Plug-In Switchgear & Transformer Terminations

PHVS & PHVT



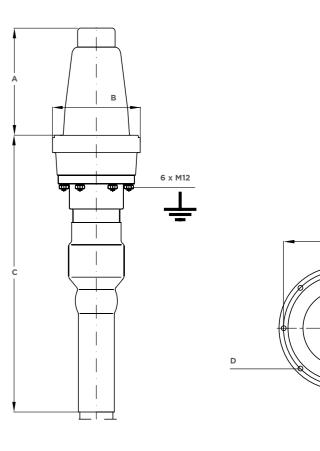
ENERGY /// HIGH VOLTAGE CABLE ACCESSORIES UP TO 245 KV

# **Dry Plug-In Switchgear and Transformer Terminations (PHVS & PHVT)**

## **APPLICATION**

 The dry compact switchgear termination for voltage classes up to 245 kV is designed to be installed in cable entry housings of gas-insulated switchgear (GIS). It complies with IEC 62271-209 standard, which essentially specifies the interfaces between the termination and the switchgear. Therefore, the termination will fit into all GIS that comply with IEC 62271-209. Adapters are available to match the dimensions of wet (oil-filled) type terminations, and older designs specified in IEC 60859. The termination operates in SF6 but also in insulating liquids like transformer oil. A corona shield at the top of the termination then provides the necessary shielding for the terminal. The termination is easily separable and consists of a plug-in part and an epoxy resin insulator. The insulator can be installed by the GIS or transformer manufacturer directly at the factory, saving installation time on-site and reducing the risk of contamination of the cable entry housing

## **FEATURES**


- Dry interfaces, no oil-filling
- Dimensions comply with IEC
- Pressure-tight resin housing
- Operates in SF6 and insulating liquids
- Pre-fabricated and factory-tested silicone-rubber stress cone
- Torque-controlled or wedge-type multi-contact conductor bolt
- No special tools required to install the
- Insulated cable gland for sectionalization
- Type tested according to IEC 60840, IEC 62067 and IEC 62271-209 standards

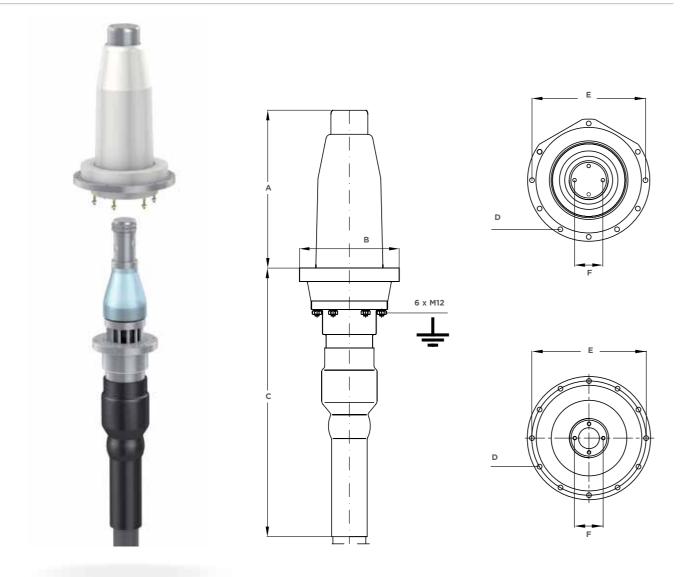
| Max. operating voltage U <sub>m</sub> (kV)           | 72.5                       | 123                        | 145                        | 170                        | 245                        |
|------------------------------------------------------|----------------------------|----------------------------|----------------------------|----------------------------|----------------------------|
| Standards                                            | IEC 60840<br>IEC 62271-209 | IEC 60840<br>IEC 62271-209 | IEC 60840<br>IEC 62271-209 | IEC 60840<br>IEC 62271-209 | IEC 62067<br>IEC 62271-209 |
| Rated voltage U (kV)                                 | 60 - 69                    | 110 - 115                  | 132 - 138                  | 150 - 161                  | 220 - 230                  |
| Rated lightning impulse withstand voltage (BIL) (kV) | 325                        | 550                        | 650                        | 750                        | 1050                       |

# **Dry Plug-In Switchgear Terminations (PHVS-72)**

Dry Plug-In Switchgear & Transformer Terminations






# **Technical data**

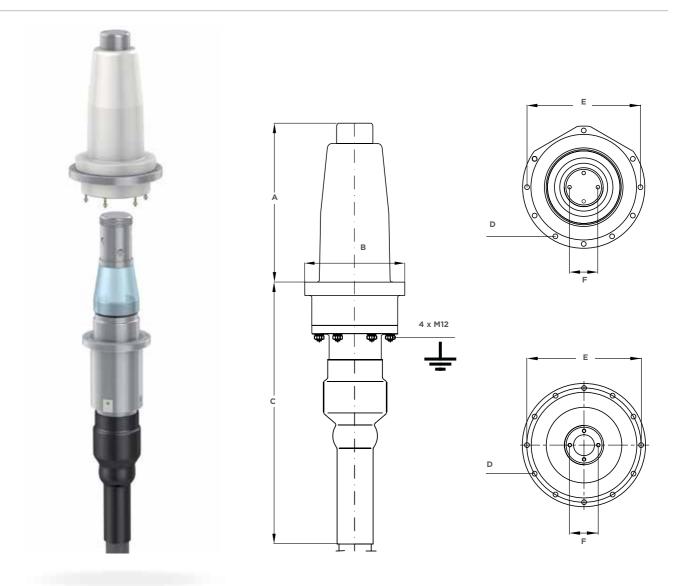
| Product description | Conductor cross section (mm²) | Diameter over cable insulation (prepared) (mm) | Max. diameter over outer cable sheath (mm) | Minimal creepage distance (mm) |
|---------------------|-------------------------------|------------------------------------------------|--------------------------------------------|--------------------------------|
| PHVS-72             | 95 - 2000                     | 34 - 78                                        | 120                                        | 255                            |

| Product description | A    | B    | C    | D      | E    | F    |
|---------------------|------|------|------|--------|------|------|
|                     | (mm) | (mm) | (mm) | (mm)   | (mm) | (mm) |
| PHVS-72             | 310  | 255  | 800  | 8 x 12 | 270  | 80   |



# **Dry Plug-In Switchgear Terminations (PHVS-145)**




# Technical data

| Product description | Conductor cross section (mm²) | Diameter over cable insulation (prepared) (mm) | Max. diameter over outer cable sheath (mm) | Minimal creepage distance (mm) |
|---------------------|-------------------------------|------------------------------------------------|--------------------------------------------|--------------------------------|
| PHVS-145 (size 1)   | 95 - 1200                     | 34 - 78                                        | 120                                        | 414                            |
| PHVS-145 (size 2)   | 1200 - 2500                   | 73 - 108                                       | 135                                        | 414                            |

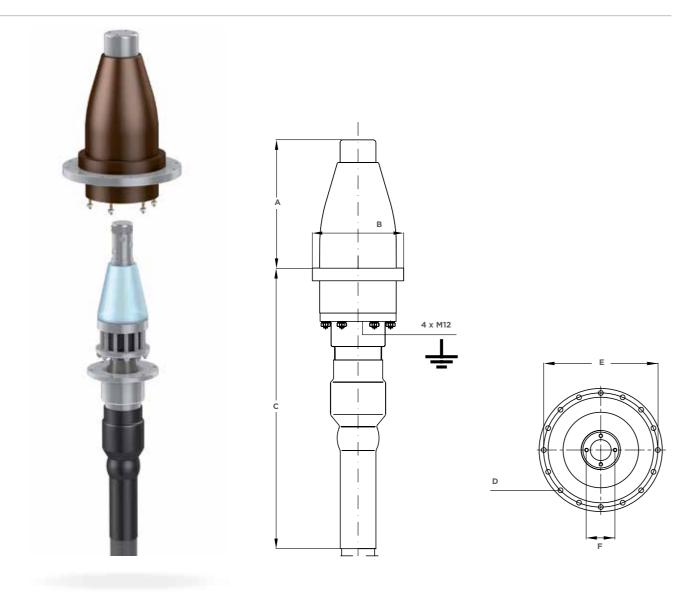
# **Dimensions**

| Product description | A<br>(mm) | B<br>(mm) | C<br>(mm) | D<br>(mm) | E<br>(mm) | F<br>(mm) |
|---------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| PHVS-145            | 470       | 297       | 800       | 12 x 13.5 | 320       | 80        |

# **Dry Plug-In Switchgear Terminations (PHVS-170)**



# Technical data


| Product description | Conductor cross section (mm²) | Diameter over cable insulation (prepared) (mm) | Max. diameter over outer cable sheath (mm) | Minimal creepage distance (mm) |
|---------------------|-------------------------------|------------------------------------------------|--------------------------------------------|--------------------------------|
| PHVS-170 (size 1)   | 95 - 1200                     | 34 - 78                                        | 120                                        | 414                            |
| PHVS-170 (size 2)   | 1000 - 2500                   | 73 - 108                                       | 135                                        | 414                            |

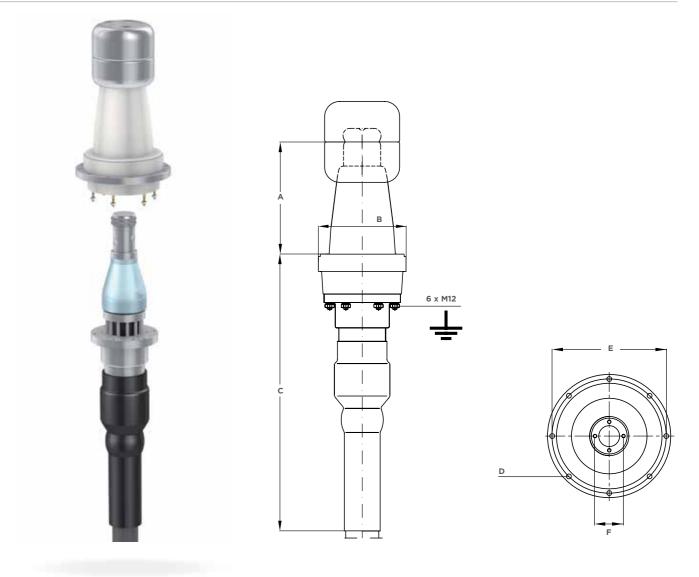
| Product description | A<br>(mm) | B<br>(mm) | C<br>(mm) | D<br>(mm) | E<br>(mm) | F<br>(mm) |
|---------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| PHVS-170            | 470       | 298       | 800       | 12 x 13.5 | 320       | 80        |





# **Dry Plug-In Switchgear Terminations (PHVS-245)**




# **Technical data**

| Product description | Conductor cross section (mm²) | Diameter over cable insulation (prepared) (mm) | Max. diameter over outer cable sheath (mm) | Minimal creepage distance (mm) |  |
|---------------------|-------------------------------|------------------------------------------------|--------------------------------------------|--------------------------------|--|
| PHVS-245            | 300 - 2500                    | 77 - 119                                       | 150                                        | 519                            |  |

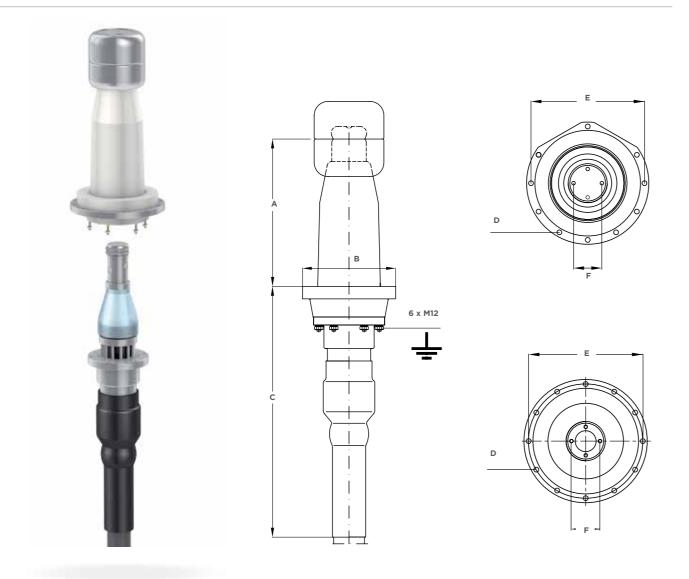
# **Dimensions**

| Product description | A<br>(mm) | B<br>(mm) | C<br>(mm) | D<br>(mm) | E<br>(mm) | F<br>(mm) |
|---------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| PHVS-245            | 620       | 454       | 860       | 16 x 13.5 | 475       | 110       |

# **Dry Plug-In Switchgear Terminations (PHVT-72)**



# Technical data


| Product description | Conductor cross section (mm²) | Diameter over cable insulation (prepared) (mm) | Max. diameter over outer cable sheath (mm) | Minimal creepage distance (mm) |
|---------------------|-------------------------------|------------------------------------------------|--------------------------------------------|--------------------------------|
| PHVT-72             | 95 - 2000                     | 34 - 78                                        | 120                                        | 255                            |

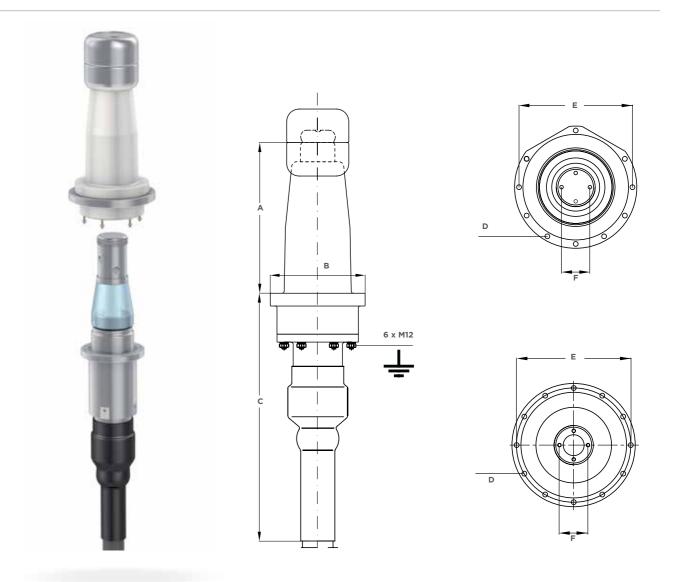
|  | Product description | Α () | B () | C    | D ()   | E () | F () |
|--|---------------------|------|------|------|--------|------|------|
|  |                     | (mm) | (mm) | (mm) | (mm)   | (mm) | (mm) |
|  | PHVT-72             | 310  | 255  | 800  | 8 x 12 | 270  | 80   |





# **Dry Plug-In Switchgear Terminations (PHVT-145)**




# Technical data

| Product description | Conductor cross section (mm²) | Diameter over cable insulation (prepared) (mm) | Max. diameter over outer cable sheath (mm) | Minimal creepage distance (mm) |
|---------------------|-------------------------------|------------------------------------------------|--------------------------------------------|--------------------------------|
| PHVT-145 (size 1)   | 95 - 1200                     | 34 - 78                                        | 120                                        | 414                            |
| PHVT-145 (size 2)   | 1200 - 2500                   | 73 - 108                                       | 135                                        | 414                            |

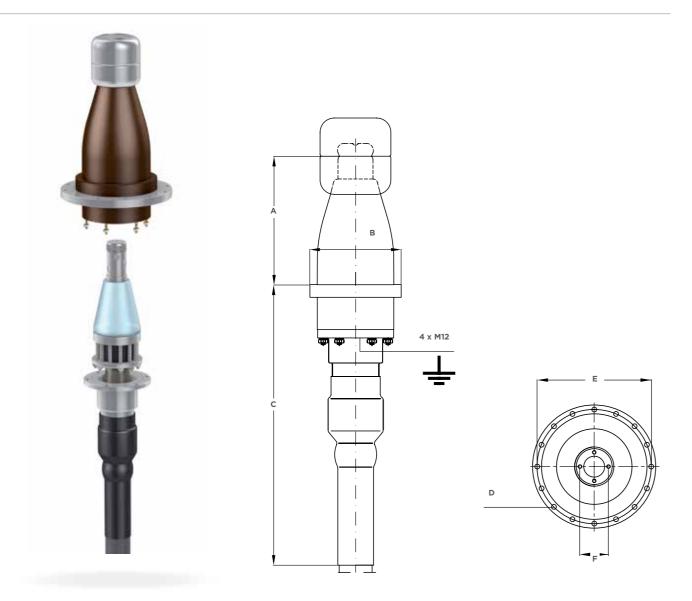
# **Dimensions**

| Product description | A<br>(mm) | B<br>(mm) | C<br>(mm) | D<br>(mm) | E<br>(mm) | F<br>(mm) |
|---------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| PHVT-145*           | 470       | 297       | 800       | 12 x 13.5 | 320       | 80        |

# **Dry Plug-In Switchgear Terminations (PHVT-170)**



# Technical data


| Product description | Conductor cross section | Diameter over cable insulation (prepared) (mm) |     | Minimal creepage distance (mm) |
|---------------------|-------------------------|------------------------------------------------|-----|--------------------------------|
| PHVT-170 (size 1)   | 1000 - 2500             | 73 - 108                                       | 135 | 414                            |
| PHVT-170 (size 2)   | 95 - 1200               | 34 - 78                                        | 120 | 414                            |

| Product description | A<br>(mm) | B<br>(mm) | C<br>(mm) | D<br>(mm) | E<br>(mm) | F<br>(mm) |
|---------------------|-----------|-----------|-----------|-----------|-----------|-----------|
| PHVT-170            | 470       | 298       | 800       | 12 x 13.5 | 320       | 80        |





# **Dry Plug-In Switchgear Terminations (PHVT-245)**



# **Technical data**

| Product description | Conductor cross section (mm²) | Diameter over cable insulation (prepared) (mm) | Max. diameter over outer cable sheath (mm) | Minimal creepage distance (mm) |  |
|---------------------|-------------------------------|------------------------------------------------|--------------------------------------------|--------------------------------|--|
| PHVT-245            | 300 - 2500                    | 77 - 119                                       | 150                                        | 519                            |  |

# Dimensions

| Draduat description | A    | В    | С    | D         | E    | F    |
|---------------------|------|------|------|-----------|------|------|
| Product description | (mm) | (mm) | (mm) | (mm)      | (mm) | (mm) |
| PHVT-245            | 620  | 454  | 860  | 16 x 13.5 | 475  | 110  |



# **Blind Plug for Dry Plug-In Switchgear** and Transformer Terminations

# **APPLICATION**

 Suitable for use when the switchgear is under operation without a cable connection. The blind plug (also known as dead end plug or dummy plug) is used to close the socket of the cable entry housing

# **FEATURES**

- Voltage proof and can be used for continuous operation at nominal voltage
- Easy installation similar to standard plug in
- Blind plug is removable and can be used as a temporary solution until the
- cable is connected Blind plug is re-usable
- Type tested according to the IEC 60840 standard

| Part Number | Product Description | Comments                                               |
|-------------|---------------------|--------------------------------------------------------|
| CV2954-000  | PHVX-72-BLIND-PLUG  | Blind plug for PHVX-72 series                          |
| CV7128-000  | PHVX-145-BLIND-PLUG | Blind plug for PHVX-145 (size 1) and PHVX-170 (size 1) |
| BM7977-000  | PHVX-170-BLIND-PLUG | Blind plug for PHVX-145 (size 2) and PHVX-170 (size 2) |



# **Test Plate for Dry Plug-In Switchgear** and Transformer Terminations

# **APPLICATION**

 Suitable for use where the switchgear needs to be tested. The plate is an adapter to pressurize the inner part of the insulator with SF6.

# **FEATURES**

- Pressure tested
- Suitable manometer available
- Reuseable

| Part Number | Part Description       | Comments                                                         |  |
|-------------|------------------------|------------------------------------------------------------------|--|
| CN0832-000  | PHVX-193-TEST-CLOSURE  | Test plate for PHVX-72 , PHVX-145 (size 1) and PHVX-170 (size 1) |  |
| BM5750-000  | PHVX-223-TEST-CLOSURE  | Test plate for PHVX-145 (size 2) and PHVX-170 (size 2)           |  |
| BM7070-000  | PH//Y-330-TEST-CLOSURE | Test plate for PH\/Y-245                                         |  |







Chapter 2: High Voltage Dry Plug-In Terminations

Add-On Kits for TE's Raychem Dry Plug-In Switchgear & Transformer Terminations PHVS & PHVT



# **Current Test Plug for Dry Plug**in Switchgear and Transformer Terminations

**APPLICATION** 

 Suitable for carrying out current tests on equipment fitted with bushings PHVS/ PHVT

**FEATURES** 

Re-usable

- Usable for transformer current tests
- Usable for GIS current tests

| Part Number | Part Description           | Comments                                                      |  |
|-------------|----------------------------|---------------------------------------------------------------|--|
| EN5949-000  | PHVX-72-CURRENT-TEST-PLUG  | Current test plug for PHVX-72 series                          |  |
| EN5950-000  | PHVX-145-CURRENT-TEST-PLUG | Current test plug for PHVX-145 (size 1) and PHVX-170 (size 1) |  |
| EN5951-000  | PHVX-170-CURRENT-TEST-PLUG | Current test plug for PHVX-145 (size 2) and PHVX-170 (size 2) |  |
| EN5952-000  | PHVX-245-CURRENT-TEST-PLUG | Current test plug for PHVX-245 series                         |  |



# Cable fixing device for Dry Plugin Switchgear and Transformer Terminations

APPLICATION

 Suitable for fixing power cables with bushings PHVS/PHVT

FEATURES

Re-usable

- Fits on supplied standard flanges
- Avoids cable bending
- Non magnetic

| Part Number | Part Description            | Flange Diameter (mm) | Diameter Over Cable<br>Sheath (mm) | Comments                                    |
|-------------|-----------------------------|----------------------|------------------------------------|---------------------------------------------|
| EN8059-000  | PHVX-CABLE-FIX-270-26/38    | 270                  | 2638                               | Fits on PHVX-72 series                      |
| EN8060-000  | PHVX-CABLE-FIX-270-36/52    | 270                  | 3652                               | Fits on PHVX-72 series                      |
| EN8061-000  | PHVX-CABLE-FIX-270-46/75    | 270                  | 4675                               | Fits on PHVX-72 series                      |
| EN8062-000  | PHVX-CABLE-FIX-270-72/100   | 270                  | 72100                              | Fits on PHVX-72 series                      |
| EN8063-000  | PHVX-CABLE-FIX-320-26/38    | 320                  | 2638                               | Fits on PHVX-145 series and PHVX-170 series |
| EN8064-000  | PHVX-CABLE-FIX-320-36/52    | 320                  | 3652                               | Fits on PHVX-145 series and PHVX-170 series |
| EN8065-000  | PHVX-CABLE-FIX-320-46/75    | 320                  | 4675                               | Fits on PHVX-145 series and PHVX-170 series |
| EN8066-000  | PHVX-CABLE-FIX-320-72/100   | 320                  | 72100                              | Fits on PHVX-145 series and PHVX-170 series |
| FN8067-000  | PHVX-CABI F-FIX-320-100/130 | 320                  | 100 130                            | Fits on PHVX-145 series and PHVX-170 series |

ENERGY /// HIGH VOLTAGE CABLE ACCESSORIES UP TO 245 KV



Chapter 2: High Voltage Dry Plug-In Terminations

High Voltage Dry Plug-In Terminations







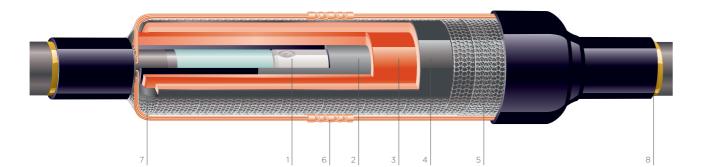
# Chapter III High Voltage Cable Joints

| Heat-Shrinkable Joints (EHVS-H)            | 00 |
|--------------------------------------------|----|
| One Piece Joints (EHVS-S)                  | 62 |
| Three Piece Joints (EHVS-T)                | 65 |
| Fibre-Optic Add-On Kit for HV Cable Joints | 68 |





# **Heat-Shrinkable Joints (EHVS-H)**


## APPLICATION

 Polymeric insulated cables of various designs can be adapted with respect to shielding and metal sheath. Our heat shrink accessories have been used • Joint fits on all polymeric cable by utilities and industrial companies around the world for more than 50 years. This ongoing field experience has us a leader in materials science and technology for high voltage applications. Our materials technology • Easy and fast to install is at the core of the development of our • No special or expensive tools required heat-shrinkable joints. The materials, used in TE Connectivity TE's Raychem • Unlimited storage life-time under normal cable accessories, have been extensively optimized with respect to product design and function, manufacturing, and  $\begin{tabular}{l} \bullet \end{tabular}$  Wide installed base at international expected service environments

# **FEATURES**

- Compact and modular design
- Heat-shrinkable stress control sleeves
- Torque-controlled connector
- constructions
- Proven shield continuity concept
- Short cut-back dimension
- Cable size transition possible
- Water and corrosion-resistant

- Lightweight components
- conditions
- Reduced waste for disposal
- customers



- 1 Mechanical connector
- 2 Electrical stress control tube
- **3** Insulating tubing
- 4 Screened insulating tubing
- 5 Copper mesh
- 6 Solderless shield connection
- 7 Sealant/mastic
- 8 Outer protection with integrated moisture barrier

| Max. operating voltage U <sub>m</sub> (kV)           | 52        | 72.5      |
|------------------------------------------------------|-----------|-----------|
| Standards                                            | IEC 60840 | IEC 60840 |
| Rated voltage U (kV)                                 | 45 - 47   | 60 - 69   |
| Rated lightning impulse withstand voltage (BIL) (kV) | 250       | 325       |







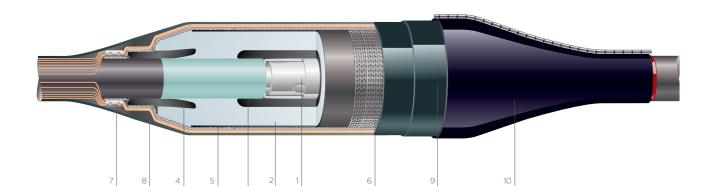
# **Technical data**

| Product description | Conductor cross section (mm²) | Diameter over<br>cable insulation<br>(prepared)<br>(mm) | Max. diameter<br>over outer cable<br>sheath (mm) | Length (mm) | Diameter (mm) | Screen treatment                 |
|---------------------|-------------------------------|---------------------------------------------------------|--------------------------------------------------|-------------|---------------|----------------------------------|
| EHVS-52H            | 95 - 2500                     | 30 - 86                                                 | 100                                              | 1350        | 130           | Inline / shield break / grounded |
| EHVS-72H            | 95 - 2500                     | 30 - 86                                                 | 100                                              | 1350        | 130           | Inline / shield break / grounded |



# One Piece Joints (EHVS-S)

## **APPLICATION**


 The joint is a pre-fabricated one-piece design for voltage classes up to 245 kV. 

Torque-controlled connector Polymeric insulated cables of various 

• Choice of outer sealing and protection designs can be adapted with respect to shielding and metal sheath. The silicone • Joint fits on all polymeric cable rubber joint body with integrated geometrical stress control, provides proven electrical function. The joint components combine electrical performance, stress control and moisture sealing to provide the important functions required for all high No tension set of joint body voltage products

## **FEATURES**

- Premoulded one-piece joint body
- systems
- constructions
- Proven shield continuity concept
- Factory-tested silicone-rubber body
- Special silicone rubber provides perfect compression force for optimised electrical performance
- Simple assembly
- Moulded thick outer conductive screen
- Geometrical electrical stress control by moulded conductive deflectors
- Type tested according to IEC 60840, IEC 62067 standards



- 1 Mechanical connector
- 2 Silicone rubber body
- 3 Inner electrode/Faraday cage
- 4 Deflector
- 5 Outer screen
- 6 Copper mesh
- 7 Solderless shield connection
- 8 Sealant/mastic
- **9** Insulating tubes
- 10 Outer protection with integrated moisture barrier

| Max. operating voltage U <sub>m</sub> (kV)           | 145       | 245       |
|------------------------------------------------------|-----------|-----------|
| Standards                                            | IEC 60840 | IEC 62067 |
| Rated voltage U (kV)                                 | 132 - 138 | 220 - 230 |
| Rated lightning impulse withstand voltage (BIL) (kV) | 650       | 1050      |

# One Piece Joints 145 kV

# **Heat-shrink Rejacketing**



One Piece Joints

| Product description | Conductor cross section (mm²) | Diameter over cable insulation (prepared) (mm) |     | Length<br>(mm) | Diameter (mm) | Screen treatment                 |
|---------------------|-------------------------------|------------------------------------------------|-----|----------------|---------------|----------------------------------|
| EHVS-145SW          | 500 - 2500                    | 60 - 112                                       | 130 | 2400           | 220           | Inline / shield break / grounded |

# **Copper Casing**



| Product description | Conductor<br>cross section<br>(mm²) | Diameter over cable insulation (prepared) (mm) |     | Length (mm) | Diameter (mm) | Screen treatment                 |
|---------------------|-------------------------------------|------------------------------------------------|-----|-------------|---------------|----------------------------------|
| EHVS-145SC          | 500 - 2500                          | 60 - 112                                       | 130 | 2400        | 280           | Inline / shield break / grounded |

# **Coffin Box**



| Product description | Conductor<br>cross section<br>(mm²) | Diameter over cable insulation (prepared) (mm) |     | Length (mm) | Diameter (mm) | Screen treatment                 |
|---------------------|-------------------------------------|------------------------------------------------|-----|-------------|---------------|----------------------------------|
| EHVS-145SB          | 500 - 2500                          | 60 - 112                                       | 130 | 3000        | 350           | Inline / shield break / grounded |

# Heavy Duty (Copper Casing and Coffin Box)



| Product description |            | Diameter over cable insulation (prepared) (mm) |     | Length (mm) | Diameter (mm) | Screen treatment                 |
|---------------------|------------|------------------------------------------------|-----|-------------|---------------|----------------------------------|
| EHVS-145SH          | 500 - 2500 | 60 - 112                                       | 130 | 3000        | 350           | Inline / shield break / grounded |







# One Piece Joints 245 kV

# **Heat-shrink Rejacketing**



| Product description | Conductor<br>cross section<br>(mm²) | Diameter over cable insulation (prepared) (mm) |     | Length (mm) | Diameter (mm) | Screen treatment                 |
|---------------------|-------------------------------------|------------------------------------------------|-----|-------------|---------------|----------------------------------|
| EHVS-245SW          | 300 - 2500                          | 71 - 119                                       | 150 | 2500        | 310           | Inline / shield break / grounded |

# **Copper Casing**



| Product description | Conductor<br>cross section<br>(mm²) | Diameter over cable insulation (prepared) (mm) |     | Length (mm) | Diameter (mm) | Screen treatment                 |
|---------------------|-------------------------------------|------------------------------------------------|-----|-------------|---------------|----------------------------------|
| EHVS-245SC          | 300 - 2500                          | 71 - 119                                       | 150 | 2500        | 350           | Inline / shield break / grounded |

# **Coffin Box**



| Product description | Conductor<br>cross section<br>(mm²) | Diameter over cable insulation (prepared) (mm) |     | Length (mm) | Diameter (mm) | Screen treatment                 |
|---------------------|-------------------------------------|------------------------------------------------|-----|-------------|---------------|----------------------------------|
| EHVS-245SB          | 300 - 2500                          | 71 - 119                                       | 150 | 3500        | 550           | Inline / shield break / grounded |

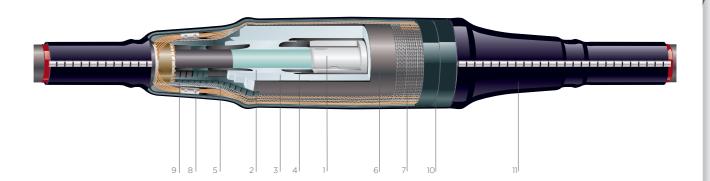
# Heavy Duty (Copper Casing and Coffin Box)



ENERGY /// HIGH VOLTAGE CABLE ACCESSORIES UP TO 245 KV

| Product description |            | Diameter over cable insulation (prepared) (mm) |     | Length (mm) | Diameter (mm) | Screen treatment                 |
|---------------------|------------|------------------------------------------------|-----|-------------|---------------|----------------------------------|
| EHVS-245SH          | 300 - 2500 | 71 - 119                                       | 150 | 3500        | 550           | Inline / shield break / grounded |

# **Three Piece Joints (EHVS-T)**


## APPLICATION

 The joint is a pre-fabricated three piece design for voltage classes up to 170 kV. Polymeric insulated cables of various designs can be adapted with respect to shielding and metal sheath. The silicone rubber joint parts with integrated geometrical stress control provides proven electrical function. The joint components combine electrical performance, stress control, and moisture sealing to provide the important functions required for all high 

• Cable size transition possible voltage products

## **FEATURES**

- Premoulded three piece joint design
- Torque-controlled connector
- Joint fits on all polymeric cable constructions
- Proven shield continuity concept
- Factory-tested silicone rubber bodies
- Special silicone rubber provides perfect compression force for optimizied electrical performance
- Short cut-back dimensions
- No special tools required to install the
- No tension set of joint body
- Moulded outer conductive screen
- Geometrical electrical stress control by moulded conductive deflectors
- Type tested according to IEC 60840 standards



- 1 Mechanical connector
- 2 Silicone rubber adapter body
- **3** Silicone rubber main body
- 4 Inner electrode/Faraday cage
- 5 Deflector
- 6 Outer screen (moulded)
- **7** Copper mesh
- 8 Solderless shield continuity
- 9 Sealant/mastic
- 10 Insulating tubes
- 11 Outer protection with integrated moisture barrier

| Max. operating voltage U <sub>m</sub> (kV)           | 145       | 170       |
|------------------------------------------------------|-----------|-----------|
| Standards                                            | IEC 60840 | IEC 60840 |
| Rated voltage U (kV)                                 | 132 - 138 | 150 - 161 |
| Rated lightning impulse withstand voltage (BIL) (kV) | 650       | 750       |









Three Piece Joints 145 kV

# **Heat-shrink Rejacketing**



| Product description | Conductor<br>cross section<br>(mm²) | Diameter over cable insulation (prepared) (mm) |     | Length (mm) | Diameter (mm) | Screen treatment                 |
|---------------------|-------------------------------------|------------------------------------------------|-----|-------------|---------------|----------------------------------|
| EHVS-145TW          | 185 -1600                           | 43 - 83                                        | 105 | 2000        | 200           | Inline / shield break / grounded |
| EHVS-145TW          | 1600 - 2500                         | 60 - 112                                       | 130 | 2000        | 250           | Inline / shield break / grounded |

# **Copper Casing**



| Product description |             | Diameter over cable insulation (prepared) (mm) |     | Length (mm) | Diameter (mm) | Screen treatment                 |
|---------------------|-------------|------------------------------------------------|-----|-------------|---------------|----------------------------------|
| EHVS-145TC          | 185 - 1600  | 43 - 83                                        | 105 | 2500        | 250           | Inline / shield break / grounded |
| EHVS-145TC          | 1600 - 2500 | 60 - 112                                       | 130 | 2500        | 250           | Inline / shield break / grounded |

# **Coffin Box**



| Product description | Conductor<br>cross section<br>(mm²) | Diameter over cable insulation (prepared) (mm) |     | Length (mm) | Diameter (mm) | Screen treatment                 |
|---------------------|-------------------------------------|------------------------------------------------|-----|-------------|---------------|----------------------------------|
| EHVS-145TB          | 185 - 1600                          | 43 - 83                                        | 105 | 3000        | 350           | Inline / shield break / grounded |
| EHVS-145TB          | 1600 - 2500                         | 60 - 112                                       | 130 | 3000        | 450           | Inline / shield break / grounded |

# Heavy Duty (Copper Casing and Coffin Box)



| Product description | Conductor<br>cross section<br>(mm²) | Diameter over cable insulation (prepared) (mm) | Max. diameter over outer cable sheath (mm) | Length (mm) | Diameter (mm) | Screen treatment                 |
|---------------------|-------------------------------------|------------------------------------------------|--------------------------------------------|-------------|---------------|----------------------------------|
| EHVS-145TH          | 185 - 1600                          | 43 - 83                                        | 105                                        | 3000        | 350           | Inline / shield break / grounded |
| EHVS-145TH          | 1600 - 2500                         | 60 - 112                                       | 130                                        | 3000        | 450           | Inline / shield break / grounded |

# **Three Piece Joints 170 kV**

# **Heat-shrink Rejacketing**



| Product description |            | Diameter over cable insulation (prepared) (mm) |     | Length (mm) | Diameter (mm) | Screen treatment                 |
|---------------------|------------|------------------------------------------------|-----|-------------|---------------|----------------------------------|
| EHVS-170TW          | 240 - 2500 | 60 - 112                                       | 130 | 2000        | 250           | Inline / shield break / grounded |

# **Copper Casing**



|            |            | Diameter over cable insulation (prepared) (mm) |     | Length (mm) | Diameter (mm) | Screen treatment                 |
|------------|------------|------------------------------------------------|-----|-------------|---------------|----------------------------------|
| EHVS-170TC | 240 - 2500 | 60 - 112                                       | 130 | 2500        | 300           | Inline / shield break / grounded |

# Coffin Box



|            | Conductor<br>cross section<br>(mm²) | Diameter over cable insulation (prepared) (mm) |     | Length (mm) | Diameter (mm) | Screen treatment                 |
|------------|-------------------------------------|------------------------------------------------|-----|-------------|---------------|----------------------------------|
| FHVS-170TR | 240 - 2500                          | 60 - 112                                       | 130 | 3000        | 450           | Inline / shield break / grounded |

# Heavy Duty (Copper Casing and Coffin Box)



| Product description |            | Diameter over cable insulation (prepared) (mm) |     | Length (mm) | Diameter (mm) | Screen treatment                 |
|---------------------|------------|------------------------------------------------|-----|-------------|---------------|----------------------------------|
| EHVS-170TH          | 240 - 2500 | 60 - 112                                       | 130 | 3000        | 450           | Inline / shield break / grounded |



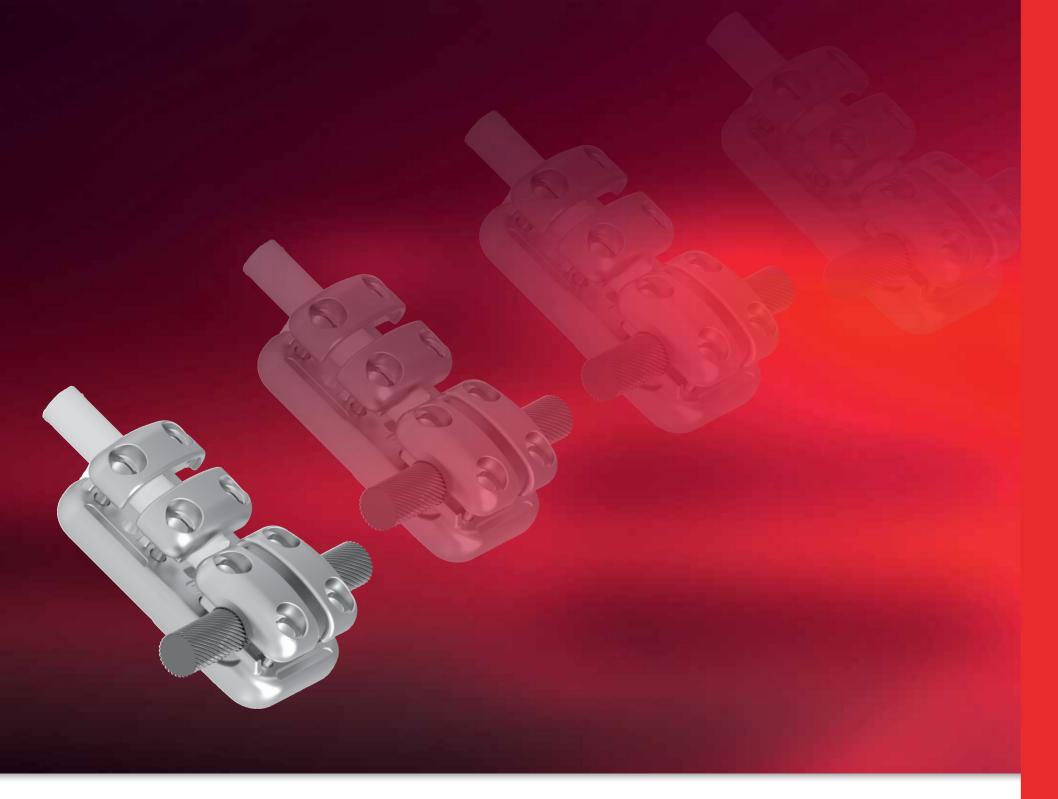






Fiber-Optic Add-On Kit for HV Cable Joints Chapter 3: High Voltage Cable Joints




# Fibre-Optic Add-On Kit for HV Cable **Joints**

# APPLICATION

**FEATURES** 

- The TE's Raychem fibre-optic add-on kit is designed to connect the glass fibres integrated in HV cables. The kit includes all components required to seal the cable jacket and the fibre-optic outlet securely and to protect the sensitive optical fibres that are housed inside the steel pipes
- The standard add-on kit is suitable for connecting two individual steel pipes each with a maximum of 24 optical fibres
- The splice box is suitable for cross-bonding and straight-through
- Gel-sealing technology ensures reliable operation even when buried joints are used
- Enhanced fibre management
- The splice box is easy to open and close without the use of special tools
- The kits are available for all TE's Raychem joints



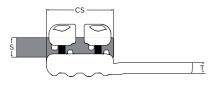


# Chapter IV High Voltage Connectors



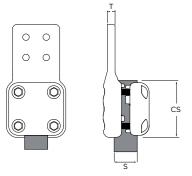
# **High Voltage Connectors for Outdoor Terminations**




 Our full line of connectors and accessories for high voltage cable accessories covers most applications in an electrical network. These connectors are typically used for the connection of outdoor terminations to bus bars or overhead lines. Industry leading TE's Raychem high voltage cable accessories are combined with in-house engineered high voltage connectors to make assemblies that are easy to install and completely reliable in the energy environment.

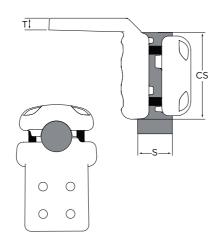


- Reduced lead-time. Make to order solutions in 4 to 6 weeks thanks to a rationalized range of casting components kept in stock.
- Extended lifetime. High electrical performances with in-house machining combined with waxed bolts. Strengthen mechanical behaviors with electrical contact grooves machined as per each conductor.
- Carbon foot print. Cut environmental impact through lower shipping volumes and reduced on-site waste.
- Services & support. Laser marking done systematically on each connector for permanent traceability and identification.
- Double special keeper designed to fit the 50 mm DIA studs of the 145kVtermination having a length of 100mm. Reference contains "LB505".


# PRODUCT SELECTION INFORMATION: DIMENSIONS IN MM

# Straight Terminal Pad (NEMA)

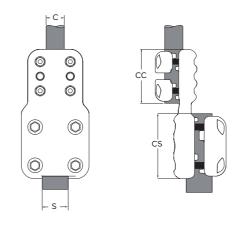



| TCPN      | Description            | S  | CS  | Т  |
|-----------|------------------------|----|-----|----|
| 2332300-1 | 5 PD 82 S305 100 C290  | 30 | 80  | 12 |
| 2331949-1 | 5 PD 82 M405 100 C290  | 40 | 104 | 16 |
| 2327166-1 | 5 PD 82 LB505 100 C290 | 50 | 125 | 16 |
| 2331948-1 | 5 PD 82 L605 100 C290  | 60 | 125 | 16 |

Transition from terminal stud to pad






# L Terminal Pad (NEMA)



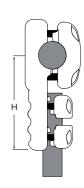
| TCPN      | Description            | S  | CS  | Т  |
|-----------|------------------------|----|-----|----|
| 2332301-1 | 5 PE 82 S305 100 C290  | 30 | 80  | 12 |
| 2332302-1 | 5 PE 82 M405 100 C290  | 40 | 104 | 16 |
| 2327179-1 | 5 PE 82 LB505 100 C290 | 50 | 125 | 16 |
| 2331094-1 | 5 PE 82 L605 100 C290  | 60 | 125 | 16 |

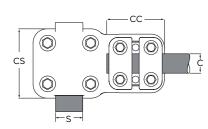


## Straight Transition Rod







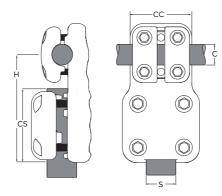


| TCPN      | Description        | S  | С           | cs  | СС  |
|-----------|--------------------|----|-------------|-----|-----|
| 2332303-1 | 5 CJ 82 S305 S205  | 30 | 15,0 - 20,5 | 80  | 80  |
| 2332006-1 | 5 CJ 82 S305 S225  | 30 | 20,6 - 22,5 | 80  | 80  |
| 2331099-1 | 5 CJ 82 S305 S245  | 30 | 22,6 - 24,5 | 80  | 80  |
| 2332304-1 | 5 CJ 82 S305 S265  | 30 | 24,6 - 26,5 | 80  | 80  |
| 2332305-1 | 5 CJ 82 S305 S285  | 30 | 26,6 - 28,5 | 80  | 80  |
| 2332306-1 | 5 CJ 82 S305       | 30 | 28,6 - 30,5 | 80  | 80  |
| 2332307-1 | 5 CJ 82 M325 S305  | 30 | 30,6 - 32,5 | 80  | 104 |
| 2327680-1 | 5 CJ 82 M345 S305  | 30 | 32,6 - 34,5 | 80  | 104 |
| 2332308-1 | 5 CJ 82 M365 S305  | 30 | 34,6 - 36,5 | 80  | 104 |
| 2332309-1 | 5 CJ 82 M385 S305  | 30 | 36,6 - 38,5 | 80  | 104 |
| 2332310-1 | 5 CJ 82 M405 S205  | 40 | 15,0 - 20,5 | 104 | 80  |
| 2332311-1 | 5 CJ 82 M405 S225  | 40 | 20,6 - 22,5 | 104 | 80  |
| 2331097-1 | 5 CJ 82 M405 S245  | 40 | 22,6 - 24,5 | 104 | 80  |
| 2332312-1 | 5 CJ 82 M405 S265  | 40 | 24,6 - 26,5 | 104 | 80  |
| 2332313-1 | 5 CJ 82 M405 S285  | 40 | 26,6 - 28,5 | 104 | 80  |
| 2332314-1 | 5 CJ 82 M405 S305  | 40 | 28,6 - 30,5 | 104 | 80  |
| 2332315-1 | 5 CJ 82 M405 M325  | 40 | 30,6 - 32,5 | 104 | 104 |
| 2325945-1 | 5 CJ 82 M405 M345  | 40 | 32,6 - 34,5 | 104 | 104 |
| 2332316-1 | 5 CJ 82 M405 M365  | 40 | 34,6 - 36,5 | 104 | 104 |
| 2332317-1 | 5 CJ 82 M405 M385  | 40 | 36,6 - 38,5 | 104 | 104 |
| 2332318-1 | 5 CJ 82 M405       | 40 | 38,6 - 40,5 | 104 | 104 |
| 2332319-1 | 5 CJ 82 LB505 S205 | 50 | 15,0 - 20,5 | 125 | 80  |
| 2332320-1 | 5 CJ 82 LB505 S225 | 50 | 20,6 - 22,5 | 125 | 80  |
| 2332321-1 | 5 CJ 82 LB505 S245 | 50 | 22,6 - 24,5 | 125 | 80  |
| 2332322-1 | 5 CJ 82 LB505 S265 | 50 | 24,6 - 26,5 | 125 | 80  |
| 2332323-1 | 5 CJ 82 LB505 S285 | 50 | 26,6 - 28,5 | 125 | 80  |
| 2332324-1 | 5 CJ 82 LB505 S305 | 50 | 28,6 - 30,5 | 125 | 80  |
| 2332325-1 | 5 CJ 82 LB505 M325 | 50 | 30,6 - 32,5 | 125 | 104 |
| 2332326-1 | 5 CJ 82 LB505 M345 | 50 | 32,6 - 34,5 | 125 | 104 |
| 2327183-1 | 5 CJ 82 LB505 M365 | 50 | 34,6 - 36,5 | 125 | 104 |
| 2332327-1 | 5 CJ 82 LB505 M385 | 50 | 36,6 - 38,5 | 125 | 104 |
| 2332328-1 | 5 CJ 82 LB505 M405 | 50 | 38,6 - 40,5 | 125 | 104 |
| 2334647-1 | 5 CJ 82 L605 S205  | 60 | 15,0 - 20,5 | 125 | 80  |
| 2334649-1 | 5 CJ 82 L605 S225  | 60 | 20,6 - 22,5 | 125 | 80  |
| 2334650-1 | 5 CJ 82 L605 S245  | 60 | 22,6 - 24,5 | 125 | 80  |
| 2334652-1 | 5 CJ 82 L605 S265  | 60 | 24,6 - 26,5 | 125 | 80  |
| 2334653-1 | 5 CJ 82 L605 S285  | 60 | 26,6 - 28,5 | 125 | 80  |
| 2334654-1 | 5 CJ 82 L605 S305  | 60 | 28,6 - 30,5 | 125 | 80  |
| 2334655-1 | 5 CJ 82 L605 M325  | 60 | 30,6 - 32,5 | 125 | 104 |
| 2334657-1 | 5 CJ 82 L605 M345  | 60 | 32,6 - 34,5 | 125 | 104 |
| 2334658-1 | 5 CJ 82 L605 M365  | 60 | 34,6 - 36,5 | 125 | 104 |
| 2334659-1 | 5 CJ 82 L605 M385  | 60 | 36,6 - 38,5 | 125 | 104 |
| 2334660-1 | 5 CJ 82 L605 M405  | 60 | 38,6 - 40,5 | 125 | 104 |



outdoor termiantions

# Tee Stud / Cable







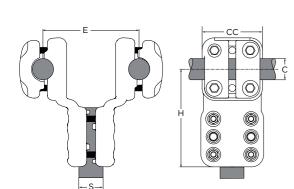

| TCPN      | Description        | S  | С           | CS  | CC  | Н   |
|-----------|--------------------|----|-------------|-----|-----|-----|
| 2332329-1 | 5 CT 82 S305 S205  | 30 | 15,0 - 20,5 | 80  | 80  | 130 |
| 2332330-1 | 5 CT 82 S305 S225  | 30 | 20,6 - 22,5 | 80  | 80  | 130 |
| 2331110-1 | 5 CT 82 S305 S245  | 30 | 22,6 - 24,5 | 80  | 80  | 130 |
| 2332331-1 | 5 CT 82 S305 S265  | 30 | 24,6 - 26,5 | 80  | 80  | 130 |
| 2332332-1 | 5 CT 82 S305 S285  | 30 | 26,6 - 28,5 | 80  | 80  | 130 |
| 2312834-1 | 5 CT 82 S305       | 30 | 28,6 - 30,5 | 80  | 80  | 130 |
| 2332333-1 | 5 CT 82 S305 M325  | 30 | 30,6 - 32,5 | 80  | 104 | 152 |
| 2325950-1 | 5 CT 82 S305 M345  | 30 | 32,6 - 34,5 | 80  | 104 | 152 |
| 2332334-1 | 5 CT 82 S305 M365  | 30 | 34,6 - 36,5 | 80  | 104 | 152 |
| 2332336-1 | 5 CT 82 M405 S205  | 40 | 15,0 - 20,5 | 104 | 80  | 133 |
| 2332337-1 | 5 CT 82 M405 S225  | 40 | 20,6 - 22,5 | 104 | 80  | 133 |
| 2331101-1 | 5 CT 82 M405 S245  | 40 | 22,6 - 24,5 | 104 | 80  | 133 |
| 2332338-1 | 5 CT 82 M405 S265  | 40 | 24,6 - 26,5 | 104 | 80  | 133 |
| 2332339-1 | 5 CT 82 M405 S285  | 40 | 26,6 - 28,5 | 104 | 80  | 133 |
| 2332340-1 | 5 CT 82 M405 S305  | 40 | 28,6 - 30,5 | 104 | 80  | 133 |
| 2332341-1 | 5 CT 82 M405 M325  | 40 | 30,6 - 32,5 | 104 | 104 | 157 |
| 2325948-1 | 5 CT 82 M405 M345  | 40 | 32,6 - 34,5 | 104 | 104 | 157 |
| 2332342-1 | 5 CT 82 M405 M365  | 40 | 34,6 - 36,5 | 104 | 104 | 157 |
| 2332343-1 | 5 CT 82 M405 M385  | 40 | 36,6 - 38,5 | 104 | 104 | 157 |
| 2324550-1 | 5 CT 82 M405       | 40 | 38,6 - 40,5 | 104 | 104 | 157 |
| 2332344-1 | 5 CT 82 LB505 S205 | 50 | 15,0 - 20,5 | 125 | 80  | 148 |
| 2332345-1 | 5 CT 82 LB505 S225 | 50 | 20,6 - 22,5 | 125 | 80  | 148 |
| 2332346-1 | 5 CT 82 LB505 S245 | 50 | 22,6 - 24,5 | 125 | 80  | 148 |
| 2332347-1 | 5 CT 82 LB505 S265 | 50 | 24,6 - 26,5 | 125 | 80  | 148 |
| 2332348-1 | 5 CT 82 LB505 S285 | 50 | 26,6 - 28,5 | 125 | 80  | 148 |
| 2332349-1 | 5 CT 82 LB505 S305 | 50 | 28,6 - 30,5 | 125 | 80  | 148 |
| 2332350-1 | 5 CT 82 LB505 M325 | 50 | 30,6 - 32,5 | 125 | 104 | 172 |
| 2332351-1 | 5 CT 82 LB505 M345 | 50 | 32,6 - 34,5 | 125 | 104 | 172 |
| 2327177-1 | 5 CT 82 LB505 M365 | 50 | 34,6 - 36,5 | 125 | 104 | 172 |
| 2332352-1 | 5 CT 82 LB505 M385 | 50 | 36,6 - 38,5 | 125 | 104 | 172 |
| 2332353-1 | 5 CT 82 LB505 M405 | 50 | 38,6 - 40,5 | 125 | 104 | 172 |
| 2334661-1 | 5 CT 82 L605 S205  | 60 | 15,0 - 20,5 | 125 | 80  | 148 |
| 2334669-1 | 5 CT 82 L605 S225  | 60 | 20,6 - 22,5 | 125 | 80  | 148 |
| 2334670-1 | 5 CT 82 L605 S245  | 60 | 22,6 - 24,5 | 125 | 80  | 148 |
| 2334671-1 | 5 CT 82 L605 S265  | 60 | 24,6 - 26,5 | 125 | 80  | 148 |
| 2334673-1 | 5 CT 82 L605 S285  | 60 | 26,6 - 28,5 | 125 | 80  | 148 |
| 2334677-1 | 5 CT 82 L605 S305  | 60 | 28,6 - 30,5 | 125 | 80  | 148 |
| 2334756-1 | 5 CT 82 L605 M325  | 60 | 30,6 - 32,5 | 125 | 104 | 172 |
| 2334757-1 | 5 CT 82 L605 M345  | 60 | 32,6 - 34,5 | 125 | 104 | 172 |
| 2334765-1 | 5 CT 82 L605 M365  | 60 | 34,6 - 36,5 | 125 | 104 | 172 |
| 2334766-1 | 5 CT 82 L605 M385  | 60 | 36,6 - 38,5 | 125 | 104 | 172 |
| 2334767-1 | 5 CT 82 L605 M405  | 60 | 38,6 - 40,5 | 125 | 104 | 172 |

Straight connection from terminal stud to cable

# Tee Cable / Stud





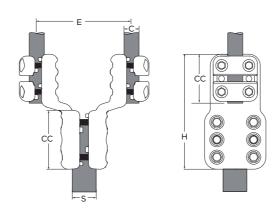

| TCPN      | Description        | S  | С           | CS  | CC  | Н   |
|-----------|--------------------|----|-------------|-----|-----|-----|
| 2332354-1 | 5 CT 82 S205 S305  | 30 | 15,0 - 20,5 | 80  | 80  | 130 |
| 2327937-1 | 5 CT 82 S225 S305  | 30 | 20,6 - 22,5 | 80  | 80  | 130 |
| 2332355-1 | 5 CT 82 S245 S305  | 30 | 22,6 - 24,5 | 80  | 80  | 130 |
| 2331111-1 | 5 CT 82 S265 S305  | 30 | 24,6 - 26,5 | 80  | 80  | 130 |
| 2332356-1 | 5 CT 82 S285 S305  | 30 | 26,6 - 28,5 | 80  | 80  | 130 |
| 2327329-1 | 5 CT 82 M325 S305  | 30 | 30,6 - 32,5 | 104 | 80  | 133 |
| 2326624-1 | 5 CT 82 M345 S305  | 30 | 32,6 - 34,5 | 104 | 80  | 133 |
| 2332357-1 | 5 CT 82 M365 S305  | 30 | 34,6 - 36,5 | 104 | 80  | 133 |
| 2332358-1 | 5 CT 82 S205 M405  | 40 | 15,0 - 20,5 | 80  | 104 | 152 |
| 2332359-1 | 5 CT 82 S225 M405  | 40 | 20,6 - 22,5 | 80  | 104 | 152 |
| 2332360-1 | 5 CT 82 S245 M405  | 40 | 22,6 - 24,5 | 80  | 104 | 152 |
| 2332361-1 | 5 CT 82 S265 M405  | 40 | 24,6 - 26,5 | 80  | 104 | 152 |
| 2332362-1 | 5 CT 82 S285 M405  | 40 | 26,6 - 28,5 | 80  | 104 | 152 |
| 2332363-1 | 5 CT 82 S305 M405  | 40 | 28,6 - 30,5 | 80  | 104 | 152 |
| 2332364-1 | 5 CT 82 M325 M405  | 40 | 30,6 - 32,5 | 104 | 104 | 157 |
| 2326123-1 | 5 CT 82 M345 M405  | 40 | 32,6 - 34,5 | 104 | 104 | 157 |
| 2332365-1 | 5 CT 82 M365 M405  | 40 | 34,6 - 36,5 | 104 | 104 | 157 |
| 2332366-1 | 5 CT 82 M385 M405  | 40 | 36,6 - 38,5 | 104 | 104 | 157 |
| 2332367-1 | 5 CT 82 S205 LB505 | 50 | 15,0 - 20,5 | 80  | 125 | 180 |
| 2332368-1 | 5 CT 82 S225 LB505 | 50 | 20,6 - 22,5 | 80  | 125 | 180 |
| 2332369-1 | 5 CT 82 S245 LB505 | 50 | 22,6 - 24,5 | 80  | 125 | 180 |
| 2332370-1 | 5 CT 82 S265 LB505 | 50 | 24,6 - 26,5 | 80  | 125 | 180 |
| 2332371-1 | 5 CT 82 S285 LB505 | 50 | 26,6 - 28,5 | 80  | 125 | 180 |
| 2332372-1 | 5 CT 82 S305 LB505 | 50 | 28,6 - 30,5 | 80  | 125 | 180 |
| 2332373-1 | 5 CT 82 M325 LB505 | 50 | 30,6 - 32,5 | 104 | 125 | 182 |
| 2332374-1 | 5 CT 82 M345 LB505 | 50 | 32,6 - 34,5 | 104 | 125 | 182 |
| 2327170-1 | 5 CT 82 M365 LB505 | 50 | 34,6 - 36,5 | 104 | 125 | 182 |
| 2332375-1 | 5 CT 82 M385 LB505 | 50 | 34,6 - 36,5 | 104 | 125 | 182 |
| 2332376-1 | 5 CT 82 M405 LB505 | 50 | 38,6 - 40,5 | 104 | 125 | 182 |
| 2334769-1 | 5 CT 82 S205 L605  | 60 | 15,0 - 20,5 | 80  | 125 | 182 |
| 2334771-1 | 5 CT 82 S225 L605  | 60 | 20,6 - 22,5 | 80  | 125 | 182 |
| 2334772-1 | 5 CT 82 S245 L605  | 60 | 22,6 - 24,5 | 80  | 125 | 182 |
| 2334773-1 | 5 CT 82 S265 L605  | 60 | 24,6 - 26,5 | 80  | 125 | 182 |
| 2334774-1 | 5 CT 82 S285 L605  | 60 | 26,6 - 28,5 | 80  | 125 | 182 |
| 2334776-1 | 5 CT 82 S305 L605  | 60 | 28,6 - 30,5 | 80  | 125 | 182 |
| 2334777-1 | 5 CT 82 M325 L605  | 60 | 30,6 - 32,5 | 104 | 125 | 182 |
| 2325949-1 | 5 CT 82 M345 L605  | 60 | 32,6 - 34,5 | 104 | 125 | 182 |
| 2334778-1 | 5 CT 82 M365 L605  | 60 | 34,6 - 36,5 | 104 | 125 | 182 |
| 2334779-1 | 5 CT 82 M385 L605  | 60 | 34,6 - 36,5 | 104 | 125 | 182 |
| 2334780-1 | 5 CT 82 M405 L605  | 60 | 38,6 - 40,5 | 104 | 125 | 182 |





Twin Tee / Stud

## Chapter 4: High Voltage Connectors outdoor termiantions



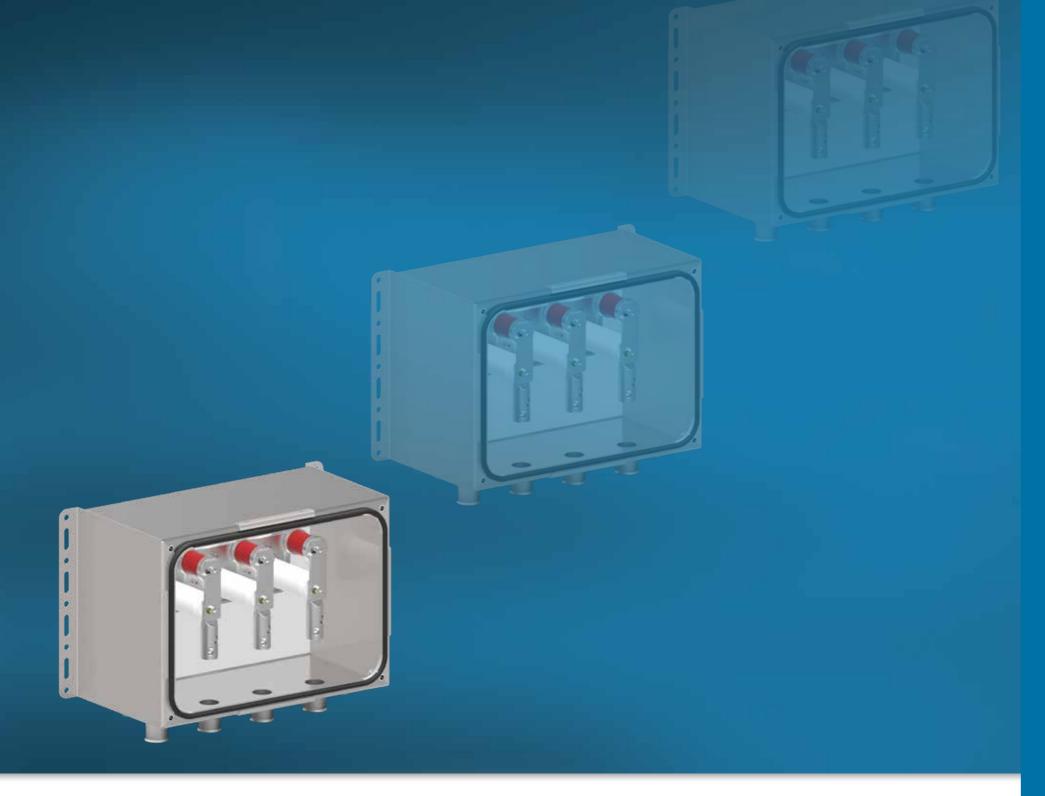



| TCPN      | Description              | S  | С           | Е   | CC  | CS  | Н   |
|-----------|--------------------------|----|-------------|-----|-----|-----|-----|
| 2332377-1 | 5 CT 82 F S205 E100 L505 | 50 | 15,0 - 20,5 | 100 | 80  | 125 | 180 |
| 2331592-1 | 5 CT 82 F S225 E100 L505 | 50 | 20,6 - 22,5 | 100 | 80  | 125 | 180 |
| 2332378-1 | 5 CT 82 F S245 E100 L505 | 50 | 22,6 - 24,5 | 100 | 80  | 125 | 180 |
| 2332379-1 | 5 CT 82 F S265 E100 L505 | 50 | 48,6 - 50,5 | 100 | 80  | 125 | 180 |
| 2332380-1 | 5 CT 82 F S285 E100 L505 | 50 | 48,6 - 50,5 | 100 | 80  | 125 | 180 |
| 2332381-1 | 5 CT 82 F S305 E100 L505 | 50 | 48,6 - 50,5 | 100 | 80  | 125 | 180 |
| 2333300-1 | 5 CT 82 F M325 E100 L505 | 50 | 48,6 - 50,5 | 100 | 104 | 125 | 182 |
| 2333301-1 | 5 CT 82 F M345 E100 L505 | 50 | 48,6 - 50,5 | 100 | 104 | 125 | 182 |
| 2333302-1 | 5 CT 82 F M365 E100 L505 | 50 | 48,6 - 50,5 | 100 | 104 | 125 | 182 |
| 2333303-1 | 5 CT 82 F M385 E100 L505 | 50 | 48,6 - 50,5 | 100 | 104 | 125 | 182 |
| 2333304-1 | 5 CT 82 F M405 E100 L505 | 50 | 48,6 - 50,5 | 100 | 104 | 125 | 182 |
| 2332382-1 | 5 CT 82 F S205 E200 L505 | 50 | 15,0 - 20,5 | 200 | 80  | 125 | 180 |
| 2332383-1 | 5 CT 82 F S225 E200 L505 | 50 | 20,6 - 22,5 | 200 | 80  | 125 | 180 |
| 2332384-1 | 5 CT 82 F S245 E200 L505 | 50 | 22,6 - 24,5 | 200 | 80  | 125 | 180 |
| 2332385-1 | 5 CT 82 F S265 E200 L505 | 50 | 24,6 - 26,5 | 200 | 80  | 125 | 180 |
| 2332386-1 | 5 CT 82 F S285 E200 L505 | 50 | 48,6 - 50,5 | 200 | 80  | 125 | 180 |
| 2332387-1 | 5 CT 82 F S305 E200 L505 | 50 | 48,6 - 50,5 | 200 | 80  | 125 | 180 |
| 2333305-1 | 5 CT 82 F M325 E200 L505 | 50 | 48,6 - 50,5 | 200 | 104 | 125 | 182 |
| 2333306-1 | 5 CT 82 F M345 E200 L505 | 50 | 48,6 - 50,5 | 200 | 104 | 125 | 182 |
| 2333307-1 | 5 CT 82 F M365 E200 L505 | 50 | 48,6 - 50,5 | 200 | 104 | 125 | 182 |
| 2333308-1 | 5 CT 82 F M385 E200 L505 | 50 | 48,6 - 50,5 | 200 | 104 | 125 | 182 |
| 2333309-1 | 5 CT 82 F M405 E200 L505 | 50 | 48,6 - 50,5 | 200 | 104 | 125 | 182 |
| 2332388-1 | 5 CT 82 F S205 E200 L605 | 60 | 15,0 - 20,5 | 200 | 80  | 125 | 180 |
| 2332389-1 | 5 CT 82 F S225 E200 L605 | 60 | 20,6 - 22,5 | 200 | 80  | 125 | 180 |
| 2332390-1 | 5 CT 82 F S245 E200 L605 | 60 | 22,6 - 24,5 | 200 | 80  | 125 | 180 |
| 2332391-1 | 5 CT 82 F S265 E200 L605 | 60 | 24,6 - 26,5 | 200 | 80  | 125 | 180 |
| 2332392-1 | 5 CT 82 F S285 E200 L605 | 60 | 26,6 - 28,5 | 200 | 80  | 125 | 180 |
| 2332393-1 | 5 CT 82 F S305 E200 L605 | 60 | 28,6 - 30,5 | 200 | 80  | 125 | 180 |
| 2332394-1 | 5 CT 82 F M325 E200 L605 | 60 | 30,6 - 32,5 | 200 | 104 | 125 | 182 |
| 2332395-1 | 5 CT 82 F M345 E200 L605 | 60 | 32,6 - 34,5 | 200 | 104 | 125 | 182 |
| 2332396-1 | 5 CT 82 F M365 E200 L605 | 60 | 34,6 - 36,5 | 200 | 104 | 125 | 182 |
| 2325496-1 | 5 CT 82 F M385 E200 L605 | 60 | 36,6 - 38,5 | 200 | 104 | 125 | 182 |
| 2332397-1 | 5 CT 82 F M405 E200 L605 | 60 | 38,6 - 40,5 | 200 | 104 | 125 | 182 |
|           |                          |    |             |     |     |     |     |

Tee connection from twin cables to terminal stud

# Twin Straight / Stud






| TCPN      | Description              | S  | С           | Е   | СС  | CS  | Н   |
|-----------|--------------------------|----|-------------|-----|-----|-----|-----|
| 2332398-1 | 5 CJ 82 F S205 E100 L505 | 50 | 15,0 - 20,5 | 100 | 125 | 80  | 180 |
| 2332399-1 | 5 CJ 82 F S225 E100 L505 | 50 | 20,6 - 22,5 | 100 | 125 | 80  | 180 |
| 2332400-1 | 5 CJ 82 F S245 E100 L505 | 50 | 22,6 - 24,5 | 100 | 125 | 80  | 180 |
| 2332401-1 | 5 CJ 82 F S265 E100 L505 | 50 | 24,6 - 26,5 | 100 | 125 | 80  | 180 |
| 2332402-1 | 5 CJ 82 F S285 E100 L505 | 50 | 26,6 - 28,5 | 100 | 125 | 80  | 180 |
| 2332403-1 | 5 CJ 82 F S305 E100 L505 | 50 | 28,6 - 30,5 | 100 | 125 | 80  | 180 |
| 2332404-1 | 5 CJ 82 F M325 E100 L505 | 50 | 30,6 - 32,5 | 100 | 125 | 104 | 182 |
| 2332405-1 | 5 CJ 82 F M345 E100 L505 | 50 | 32,6 - 34,5 | 100 | 125 | 104 | 182 |
| 2332406-1 | 5 CJ 82 F M365 E100 L505 | 50 | 34,6 - 36,5 | 100 | 125 | 104 | 182 |
| 2332407-1 | 5 CJ 82 F M385 E100 L505 | 50 | 36,6 - 38,5 | 100 | 125 | 104 | 182 |
| 2332408-1 | 5 CJ 82 F M405 E100 L505 | 50 | 38,6 - 40,5 | 100 | 125 | 104 | 182 |
| 2332409-1 | 5 CJ 82 F S205 E200 L505 | 50 | 15,0 - 20,5 | 200 | 125 | 80  | 180 |
| 2332410-1 | 5 CJ 82 F S225 E200 L505 | 50 | 20,6 - 22,5 | 200 | 125 | 80  | 180 |
| 2332411-1 | 5 CJ 82 F S245 E200 L505 | 50 | 22,6 - 24,5 | 200 | 125 | 80  | 180 |
| 2332412-1 | 5 CJ 82 F S265 E200 L505 | 50 | 24,6 - 26,5 | 200 | 125 | 80  | 180 |
| 2332413-1 | 5 CJ 82 F S285 E200 L505 | 50 | 26,6 - 28,5 | 200 | 125 | 80  | 180 |
| 2332414-1 | 5 CJ 82 F S305 E200 L505 | 50 | 28,6 - 30,5 | 200 | 125 | 80  | 180 |
| 2332415-1 | 5 CJ 82 F M325 E200 L505 | 50 | 30,6 - 32,5 | 200 | 125 | 104 | 182 |
| 2332416-1 | 5 CJ 82 F M345 E200 L505 | 50 | 32,6 - 34,5 | 200 | 125 | 104 | 182 |
| 2332417-1 | 5 CJ 82 F M365 E200 L505 | 50 | 34,6 - 36,5 | 200 | 125 | 104 | 182 |
| 2332418-1 | 5 CJ 82 F M385 E200 L505 | 50 | 36,6 - 38,5 | 200 | 125 | 104 | 182 |
| 2332419-1 | 5 CJ 82 F M405 E200 L505 | 50 | 38,6 - 40,5 | 200 | 125 | 104 | 182 |
| 2332420-1 | 5 CJ 82 F S205 E200 L605 | 60 | 15,0 - 20,5 | 200 | 125 | 80  | 180 |
| 2332421-1 | 5 CJ 82 F S225 E200 L605 | 60 | 20,6 - 22,5 | 200 | 125 | 80  | 180 |
| 2332422-1 | 5 CJ 82 F S245 E200 L605 | 60 | 22,6 - 24,5 | 200 | 125 | 80  | 180 |
| 2332423-1 | 5 CJ 82 F S265 E200 L605 | 60 | 24,6 - 26,5 | 200 | 125 | 80  | 180 |
| 2332424-1 | 5 CJ 82 F S285 E200 L605 | 60 | 26,6 - 28,5 | 200 | 125 | 80  | 180 |
| 2332425-1 | 5 CJ 82 F S305 E200 L605 | 60 | 28,6 - 30,5 | 200 | 125 | 80  | 180 |
| 2332426-1 | 5 CJ 82 F M325 E200 L605 | 60 | 30,6 - 32,5 | 200 | 125 | 104 | 182 |
| 2332427-1 | 5 CJ 82 F M345 E200 L605 | 60 | 32,6 - 34,5 | 200 | 125 | 104 | 182 |
| 2332428-1 | 5 CJ 82 F M365 E200 L605 | 60 | 34,6 - 36,5 | 200 | 125 | 104 | 182 |
| 2332429-1 | 5 CJ 82 F M385 E200 L605 | 60 | 36,6 - 38,5 | 200 | 125 | 104 | 182 |
| 2332430-1 | 5 CJ 82 F M405 E200 L605 | 60 | 38,6 - 40,5 | 200 | 125 | 104 | 182 |

Tee connection from twin cables to terminal stud







# Chapter V Link Boxes

| HV Link Boxes - HVLB series     | 8: |
|---------------------------------|----|
| HV Link Boxes - EPPA-055 series | 88 |

Chapter 5: Link Boxes

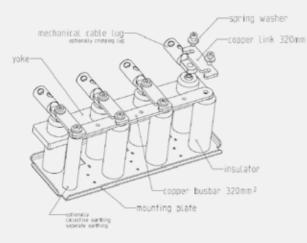


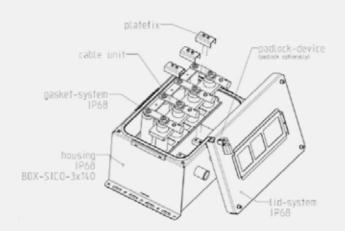
# **Link boxes**

TE's high voltage linkoxes HVLB provides a sealed and dry environment for high voltage cable sheath earthing connection. It eliminates or reduces voltages and circulating currents.

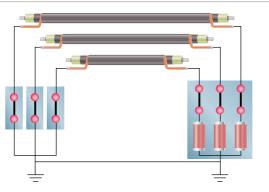
Through our modular system we can provide any technical marketable configuration. A well-arranged best-in-class configuration ensures upmost reliability.

Homogeneous distances between the electrical path, trustworthy electrical connections and a special developed short-circuit-yoke ensure the very best impulse-voltage 65 kV and short-circuit [63 kA/lsec.] withstand.


For safety in an unexpected case, our box is tested to absorb the power of an internal arc with 25 kA for 0.1 sec.


To get an easy access to the cable sheath for inspections, TE developed a reliable gasket-lid-system, which is absolutely-tight (IP68) against water and dust. The lid system is equipped with a proof device for padlocks to prevent unauthorized access.

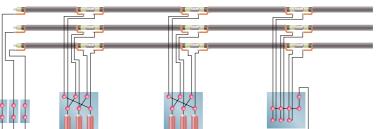
Gland sealing with WCSM heat shrinking tube is the very reliable basic design. On demand we supply also screw cable glands (IP68) and for additional safety a new developed cable gland sealwall.


# **Additional Devices:**

- Pedestrian device
- Plexi-Cover (Protection against electrical contact)

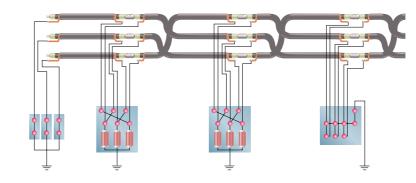





# **Most Popular Cable Sheath Grounding Options**



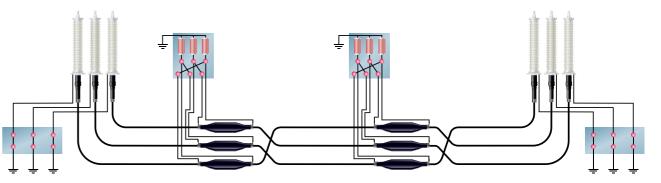
Chapter 5: Link Boxes


# Single point earthing

On relatively short cable sections, the cable sheaths are solidly bonded together and earthed at one position. The sheaths of the three cable sections are connected and grounded at one point only. At all other points, there is a voltage between sheath and ground that is at its maximum at the farthest point from the ground bond. Since there is no closed sheath circuit, current does not flow along the sheaths and no sheath circulation current loss occurs.



## **Cross bonding**


The cable route is sectionalized into equal lengths. The sections are cross-connected to neutralize the induced voltages. The phase sum of the introduced voltages is zero and, therefore, there is no circulating currents when the cable laying is symmetrical.



# Cross bonding and transposition

For cable laying in unsymmetrical formations, the induced voltages are not equal at each phase and, therefore, the phase sum of the voltages is not zero despite crossbonding. The cables are transposed at each joint position and the cable sheaths are cross-connected, with each cable occupying the same relative position in the cable formation. By this means, the phase sum of the induced voltage sheaths is the same over three sections.







Most popular cable sheath grounding Chapter 5: Link Boxes

# **Description HVLB**

HVLB: High Voltage Linkbox

SICO: single core cable

**COAX:** concentric cable

**SVL:** grounding via Sheath Voltage Limiter

**GND:** direct grounding without

SPL: split, two parts; SVL and GND combined

CRO: cross bonding

UNI = universal; SVL or GND

entry: number of entries (earthing outlet not included!)

## h-type:

SEP: separate = busbar not connected with the housing COL: collective = busbar connected with the housing

cc = cross-section in mm<sup>2</sup> dd = core-diameter in mm DD = sheath-diameter in mm

## mod:

M01=Standardmodification, Material A2 / SS304 / 4301 / X5CrNi18-10, Surface RAL 70350 0.08mm fine structure outdoor, IP68. Mxx=further modifications SS316, A4 3layer painting C5M DIN EN ISO 12944 offshore, Protection against electrical

# **HVLB-SICO Link Boxes**

Single core cables





| Basic-description | Entry | Split | SvI | H-type | Cable | Mod |
|-------------------|-------|-------|-----|--------|-------|-----|
|                   | 1E    | -     | xkV | hhh    | CC    | Mxx |
| HVLB-SICO-SVL     | 3E    | -     | xkV | hhh    | CC    | Mxx |
|                   | 4E    | -     | xkV | hhh    | CC    | Mxx |
|                   | 6E    | -     | xkV | hhh    | CC    | Mxx |
| HVLB-SICO-GND     | 1E    | -     | -   | hhh    | CC    | Mxx |
|                   | 3E    | -     | -   | hhh    | CC    | Mxx |
|                   | 4E    | -     | -   | hhh    | CC    | Mxx |
|                   | 6E    | -     | -   | hhh    | CC    | Mxx |
|                   | 4iiE  | -     | -   | hhh    | CC    | Mxx |
|                   | 6iiE  | -     | -   | hhh    | CC    | Mxx |
|                   | 4E    | GND   | xkV | hhh    | CC    | Mxx |
| HVLB-SICO-SPL     | 45    | xkV   | xkV | hhh    | CC    | Mxx |
| HVLB-SICO-SPL     | 6E    | GND   | xkV | hhh    | CC    | Mxx |
|                   | OE    | xkV   | xkV | hhh    | CC    | Mxx |
| HVLB-SICO-CRO-OUT | -     | -     | xkV | hhh    | CC    | Mxx |
| HVLB-SICO-CRO     | -     | -     | xkV | hhh    | CC    | Mxx |
| HVLB-SICO-UNI     | 2E    | -     | xkV | hhh    | CC    | Mxx |

For Example: HVLB-SICO-SVL-3E-3KV-SEP-S3-M01

# **HVLB-COAX Link Boxes**

Concentric cables





| Basic-description | Entry | Split | SvI | H-type | Cable    | Mod |
|-------------------|-------|-------|-----|--------|----------|-----|
| HVLB-COAX-SVL     | -     | -     | xkV | hhh    | dd-DD-cc | Mxx |
| HVLB-COAX-GND     | -     | -     | -   | hhh    | dd-DD-cc | Mxx |
| HVLB-COAX-SPL     | -     | GND   | xkV | hhh    | dd-DD-cc | Mxx |
| HVLB-COAX-SPL     | -     | xkV   | xkV | hhh    | dd-DD-cc | Mxx |
| HVLB-COAX-CRO-MIN | -     | -     | xkV | hhh    | dd-DD-cc | Mxx |

For Example: HVLB-SICO-SVL-3E-3KV-SEP-S3-M01

ENERGY /// HIGH VOLTAGE CABLE ACCESSORIES UP TO 245 KV



Selection Tables for TE's Raychem Link Boxes for Single Core Cables

# **HVLB-Linkboxes**

Chapter 5: Link Boxes

|        | Mechanical dimensions |                                 | Electrical dimensions      |                      |                      |                    |
|--------|-----------------------|---------------------------------|----------------------------|----------------------|----------------------|--------------------|
| Family | Туре                  | Busbar<br>crosssection<br>(mm²) | Distance<br>phases<br>(mm) | Impulse voltage (kV) | Short circut current | Power arc internal |
| HVLB   | SICO                  | 320                             | 90                         | 65                   | 63kA / 1sec          | 25kA / 0,1sec      |
| HVLB   | COAX                  | 320                             | 180                        | 75                   | 63kA / 1sec          | 25kA / 0,1sec      |

| Available Material |              |                   |                           |  |  |
|--------------------|--------------|-------------------|---------------------------|--|--|
| A2                 | SS304 / 4301 | X5CrNi18-10       | Drinking water resistance |  |  |
| A4                 | SS316 / 4401 | X5CrNiMo17-12-2   | Salt water resistance     |  |  |
| A5                 | SS904 / 4539 | X1NiCrMoCu25-20-5 | Sea water resistance      |  |  |

|          |  |         | Available Pair      | nting    |                        |
|----------|--|---------|---------------------|----------|------------------------|
| Standard |  |         | 1layer RAL7035      | 0,08 mm  | fine structure outdoor |
|          |  |         |                     |          |                        |
| Offshore |  |         | 3layer C5M          | 0,225 mm | DIN EN ISO 12944       |
| layer1:  |  | layer1: | Hempathane HS 55610 | 0,05 mm  | zinc free epoxy        |
|          |  | layer1: | Hempadur 15570      | 0,125 mm | MIO pigmented epoxy    |
|          |  | layer1: | Hempathane HS 55610 | 0,05 mm  | polyurethane enamel    |







• Dimension 326 x 431 x 320

Single core cable

• Removable links

SICO-SVL

SICO-GND

SICO-SVL

# • Protection class IP68

# **HVLB-SICO-2E HVLB-SICO-UNI**

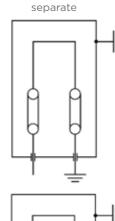


- Dimension 466 x 431 x 320
- For universal usage (Grounding, SVL and Cross-bonding)
- Single core cable
- Protection class IP68
- Removable links

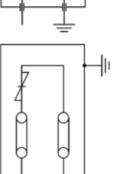
# **HVLB-SICO-3E**

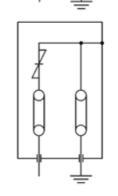


• Dimension 606 x 431 x 320


• Single core cable

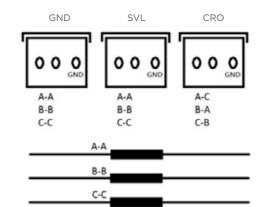
• Protection class IP68

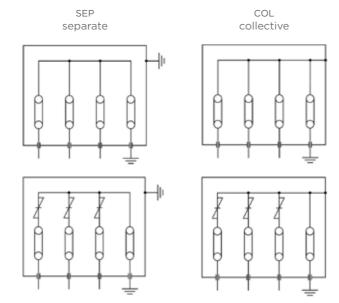

• Removable links




SICO-GND




SEP

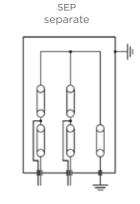





COL

collective






# **HVLB-SICO-4E**



SICO-GND

SICO-GND



SEP

separate

collective

COL

Dimension 466 x 431 x 460

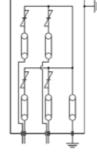
For grounding

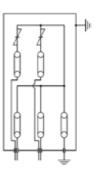
Single core cable

Protection class IP68

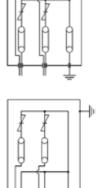
Removable links

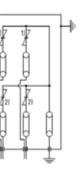
# **HVLB-SICO-4iiE**

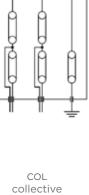


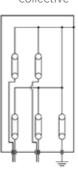


Dimension 466 x 601 x 460

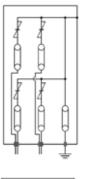
Single core cable


Protection class IP68 Removable links

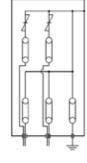

SICO-SVL

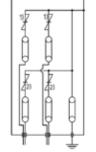




SICO-SPL





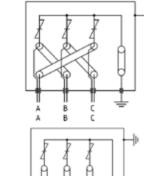





Link Boxes






SICO-SPL gnd-xkv



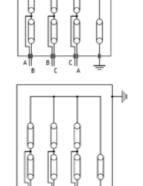


- Dimension 606 x 431 x 320
- Single core cable
- Protection class IP68
- Removable links

SICO-CRO



SEP


separate

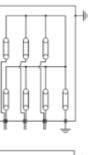
COL

collective

SICO-CRO-out

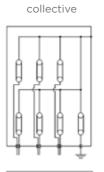
SICO-GND



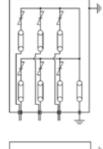

**HVLB-SICO-6iiE** 

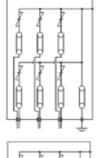


- Dimension 606 x 401 x 460
- Single core cable
- Protection class IP68
- Removable links

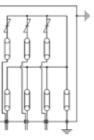

SICO-GND

SICO-SVL





SEP

separate



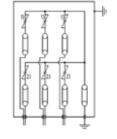

COL

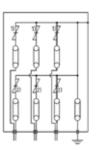




SICO-SPL GND-xkV




SICO-SPL xkV-xkV


COAX-GND

COAX-SVL

COAX-SPL GND-xkV

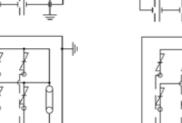
COAX-SPL xkV-xkV



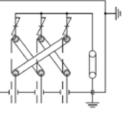


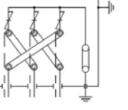
COL

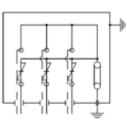
collective

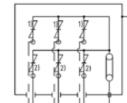

**HVLB-COAX** 

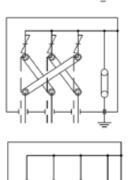


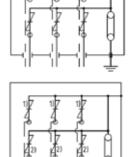

- Dimension 821 x 498 x 446
- Coaxial cable
- Protection class IP68
- Removable links


separate


SEP














ENERGY /// HIGH VOLTAGE CABLE ACCESSORIES UP TO 245 KV



|          |          | Mechanical dimensions |                                 | Electrical dimensions      |                      |                      |                    |
|----------|----------|-----------------------|---------------------------------|----------------------------|----------------------|----------------------|--------------------|
| U-Niveau | Family   | Class                 | Busbar<br>crosssection<br>(mm²) | Distance<br>phases<br>(mm) | Impulse voltage (kV) | Short circut current | Power arc internal |
| 6 -30 kV | EPPA-055 | IP68                  | 120                             | 35                         | 35                   | -                    | -                  |
| 6 -30 kV | EPPA-055 | IP56                  | 120                             | 35                         | 35                   | -                    | -                  |

|    | Ava          | ilable Material |                           |  |
|----|--------------|-----------------|---------------------------|--|
| A2 | SS304 / 4301 | X5CrNi18-10     | Drinking water resistance |  |

| Available Painting  |  |
|---------------------|--|
| without Sandblasted |  |



# **Features**

- Electrically and mechanically type tested
- 1-phase and 3-phase boxes
- With or without surge arresters
- With or without removable links







| Bonding lead (type)            | Single-core                | Single-core                |
|--------------------------------|----------------------------|----------------------------|
| Bonding lead (mm²)             | 95 - 300                   | 95 - 300                   |
| Protection class               | IP 56 or IP 68             | IP 56 or IP 68             |
| Application                    | Non buried                 | Non buried                 |
| Sheath voltage limiters        | N/A                        | 1 kV - 6 kV                |
| Box size L x H x W (mm)        | 310 x 255 x 310            | 310 x 255 x 310            |
| Material                       | Stainless steel            | Stainless steel            |
| Total weight                   | Approx. 16 kg              | Approx. 16 kg              |
| Connection links               | Copper 120 mm <sup>2</sup> | Copper 120 mm <sup>2</sup> |
| Cable connection               | Compression lug            | Compression lug            |
| Impulse withstand voltage (kV) | 35                         | 35                         |
| AC withstand voltage (kV)      | 24                         | 24                         |
| DC withstand voltage (kV)      | 40                         | 40                         |
| Short circuit current (kA/1s)  | -                          | -                          |
| Description                    | EPPA-055-0-3               | EPPA-055-x*-3              |

Indicates voltage class of sheath voltage limiter (SVL)

# Link Diagram

Link Diagram





| Bonding lead (type)            | Single-core                | Single-core                |
|--------------------------------|----------------------------|----------------------------|
| Bonding lead (mm²)             | 95 - 300                   | 95 - 300                   |
| Protection class               | IP 56 or IP 68             | IP 56 or IP 68             |
| Application                    | Non buried                 | Non buried                 |
| Sheath voltage limiters        | N/A                        | 1 kV - 6 kV                |
| Box size L x H x W (mm)        | 310 x 255 x 310            | 310 x 255 x 310            |
| Material                       | Stainless steel            | Stainless steel            |
| Total weight                   | Approx. 16 kg              | Approx. 16 kg              |
| Connection links               | Copper 120 mm <sup>2</sup> | Copper 120 mm <sup>2</sup> |
| Cable connection               | Compression lug            | Compression lug            |
| Impulse withstand voltage (kV) | 35                         | 35                         |
| AC withstand voltage (kV)      | 24                         | 24                         |
| DC withstand voltage (kV)      | 40                         | 40                         |
| Short circuit current (kA/1s)  | -                          | -                          |
| Description                    | EPPA-055-0-3               | EPPA-055-x*-3              |

\* Indicates voltage class of sheath voltage limiter (SVL)

Link Boxes

# Link Diagram





| Bonding lead (type)            | Single-core                | Single-core                |
|--------------------------------|----------------------------|----------------------------|
| Bonding lead (mm²)             | 95 - 300                   | 95 - 300                   |
| Protection class               | IP 56 or IP 68             | IP 56 or IP 68             |
| Application                    | Non buried                 | Non buried                 |
| Sheath voltage limiters        | N/A                        | 1 kV - 6 kV                |
| Box size L x H x W (mm)        | 310 x 255 x 310            | 310 x 255 x 310            |
| Material                       | Stainless steel            | Stainless steel            |
| Total weight                   | Approx. 16 kg              | Approx. 16 kg              |
| Connection links               | Copper 120 mm <sup>2</sup> | Copper 120 mm <sup>2</sup> |
| Cable connection               | Compression lug            | Compression lug            |
| Impulse withstand voltage (kV) | 35                         | 35                         |
| AC withstand voltage (kV)      | 24                         | 24                         |
| DC withstand voltage (kV)      | 40                         | 40                         |
| Short circuit current (kA/1s)  | -                          | -                          |
| Description                    | EPPA-055-0-3               | EPPA-055-x*-3              |

\* Indicates voltage class of sheath voltage limiter (SVL)



Selection Tables for TE's Raychem Link Boxes for Single Core Cables Chapter 5: Link Boxes Chapter 5: Link Boxes





| Bonding lead (type)            | Single-core                |
|--------------------------------|----------------------------|
| Bonding lead (mm²)             | 95 - 300                   |
| Protection class               | IP 56 or IP 68             |
| Application                    | Non buried                 |
| Sheath voltage limiters        | 1 kV - 6 kV                |
| Box size L x H x W (mm)        | 310 x 255 x 310            |
| Material                       | Stainless steel            |
| Total weight                   | Approx. 16 kg              |
| Connection links               | Copper 120 mm <sup>2</sup> |
| Cable connection               | Compression lug            |
| Impulse withstand voltage (kV) | 35                         |
| AC withstand voltage (kV)      | 24                         |
| DC withstand voltage (kV)      | 40                         |
| Short circuit current (kA/1s)  | •                          |
| Description                    | EPPA-055-x*-3              |

\* Indicates voltage class of sheath voltage limiter (SVL)

# Link Diagram

ENERGY /// HIGH VOLTAGE CABLE ACCESSORIES UP TO 245 KV





| Bonding lead (type)            | Single-core                          | Single-core                          |
|--------------------------------|--------------------------------------|--------------------------------------|
| Bonding lead (mm²)             | 95 - 300                             | 95 - 300                             |
| Protection class               | IP 56                                | IP 56                                |
| Application                    | Non buried                           | Non buried                           |
| Sheath voltage limiters        | N/A                                  | 1 kV - 6 kV                          |
| Box size L x H x W (mm)        | 300 x 165 x 190                      | 300 x 165 x 190                      |
| Material                       | Stainless steel                      | Stainless steel                      |
| Total weight                   | Approx. 10 kg                        | Approx. 11 kg                        |
| Connection links               | Removable copper 120 mm <sup>2</sup> | Removable copper 120 mm <sup>2</sup> |
| Cable connection               | Compression lug                      | Compression lug                      |
| Impulse withstand voltage (kV) | 35                                   | 35                                   |
| AC withstand voltage (kV)      | 24                                   | 24                                   |
| DC withstand voltage (kV)      | 40                                   | 40                                   |
| Short circuit current (kA/1s)  | -                                    | -                                    |
| Description                    | EPPA-055-0-1                         | EPPA-055-x*-1                        |

\* Indicates voltage class of sheath voltage limiter (SVL)





Link Boxes



TE Connectivity Ltd. is a \$14 billion global technology and manufacturing leader creating a safer, sustainable, productive, and connected future. For more than 75 years, our connectivity and sensor solutions, proven in the harshest environments, have enabled advancements in transportation, industrial applications, medical technology, energy, data communications, and the home. With 80,000 employees, including more than 8,000 engineers, working alongside customers in approximately 140 countries, TE ensures that EVERY CONNECTION COUNTS. Learn more at <a href="https://www.te.com">www.te.com</a> and on <a href="https://www.te.com">LinkedIn</a>, <a href="https://www.te.com">Facebook</a>, <a href="https://www.te.com">WeChat</a> and <a href="https://www.te.com">Twitter</a>.

## Generation

- Conventional Power
- Nuclear Power
- Wind/Solar
- Hydro-electric

## **Transmission & Distribution**

- Substation
- Underground
- Overhead
- Street Lighting

# Industry

- Mining
- · Petrochemical
- Railway
- Shipbuilding

# WHEREVER ELECTRICITY FLOWS, YOU'LL FIND TE CONNECTIVITY



# te.com/energy

## FOR MORE INFORMATION:

**TE Technical Support Centers** 

## **AMERICAS**

USA/Canada: +1 (800) 327-6996 Mexico: +52 0-55-1106-0800 Brazil: +55 11-2103-6023 South America: +57 1-319-8962

## ASIA-PACIFIC

Australia: +61 29-554-2695 New Zealand: +64 9-634-4580 China: +86 (0) 400-820-6015

# EUROPE-MIDDLE EAST-AFRICA

France: +33 (0) 38-058-3200 Germany/Switzerland: +49 (0) 89-608-9903 +44 08708-707-500 Spain/Portugal: +34 912-681-885 +39 333 250 0915 Italv: Benelux: +32 16-508-695 Russia: +7 495-790 790 2-200 Poland/Baltics: +48 224-576-753 Czech Republic: +42 (0) 272-011-105 +46 850 725 000 Sweden/Norway: Middle Fast: +971 4-211-7020

# te.com/energy

© 2019 TE Connectivity. All Rights Reserved. EPP-1946-EN-1/19

AMP, Bowthorpe EMP, Raychem, Simel, Utilux, TE Connectivity and the TE connectivity (logo) are trademarks of the TE Connectivity Ltd. family of companies. Other logos, product and Company names mentioned herein may be trademarks of their respective owners. While TE has made every reasonable effort to ensure the accuracy of the information in this brochure, TE does not guarantee that it is error-free, nor does TE make any other representation, warranty or guarantee that the information is accurate, correct, reliable or current. TE reserves the right to make any adjustments to the information contained herein at any time without notice. TE expressly disclaims all implied warranties regarding the information contained herein, including, but not limited to, any implied warranties of merchantability or fitness for a particular purpose. The dimensions in this brochure are for reference purposes only and are subject to change without notice. Specifications are subject to change without notice. Consult TE for the latest dimensions and design specifications.

